498 lines
16 KiB
C++
498 lines
16 KiB
C++
// Copyright (c) 2010, Google Inc.
|
|
// All rights reserved.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without
|
|
// modification, are permitted provided that the following conditions are
|
|
// met:
|
|
//
|
|
// * Redistributions of source code must retain the above copyright
|
|
// notice, this list of conditions and the following disclaimer.
|
|
// * Redistributions in binary form must reproduce the above
|
|
// copyright notice, this list of conditions and the following disclaimer
|
|
// in the documentation and/or other materials provided with the
|
|
// distribution.
|
|
// * Neither the name of Google Inc. nor the names of its
|
|
// contributors may be used to endorse or promote products derived from
|
|
// this software without specific prior written permission.
|
|
//
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
// Original author: Jim Blandy <jimb@mozilla.com> <jimb@red-bean.com>
|
|
|
|
// Derived from:
|
|
// test_assembler.cc: Implementation of google_breakpad::TestAssembler.
|
|
// See test_assembler.h for details.
|
|
|
|
// Derived from:
|
|
// cfi_assembler.cc: Implementation of google_breakpad::CFISection class.
|
|
// See cfi_assembler.h for details.
|
|
|
|
#include "LulTestInfrastructure.h"
|
|
|
|
#include "LulDwarfInt.h"
|
|
|
|
#include <cassert>
|
|
|
|
namespace lul_test {
|
|
namespace test_assembler {
|
|
|
|
using std::back_insert_iterator;
|
|
|
|
Label::Label() : value_(new Binding()) {}
|
|
Label::Label(uint64_t value) : value_(new Binding(value)) {}
|
|
Label::Label(const Label& label) {
|
|
value_ = label.value_;
|
|
value_->Acquire();
|
|
}
|
|
Label::~Label() {
|
|
if (value_->Release()) delete value_;
|
|
}
|
|
|
|
Label& Label::operator=(uint64_t value) {
|
|
value_->Set(NULL, value);
|
|
return *this;
|
|
}
|
|
|
|
Label& Label::operator=(const Label& label) {
|
|
value_->Set(label.value_, 0);
|
|
return *this;
|
|
}
|
|
|
|
Label Label::operator+(uint64_t addend) const {
|
|
Label l;
|
|
l.value_->Set(this->value_, addend);
|
|
return l;
|
|
}
|
|
|
|
Label Label::operator-(uint64_t subtrahend) const {
|
|
Label l;
|
|
l.value_->Set(this->value_, -subtrahend);
|
|
return l;
|
|
}
|
|
|
|
// When NDEBUG is #defined, assert doesn't evaluate its argument. This
|
|
// means you can't simply use assert to check the return value of a
|
|
// function with necessary side effects.
|
|
//
|
|
// ALWAYS_EVALUATE_AND_ASSERT(x) evaluates x regardless of whether
|
|
// NDEBUG is #defined; when NDEBUG is not #defined, it further asserts
|
|
// that x is true.
|
|
#ifdef NDEBUG
|
|
# define ALWAYS_EVALUATE_AND_ASSERT(x) x
|
|
#else
|
|
# define ALWAYS_EVALUATE_AND_ASSERT(x) assert(x)
|
|
#endif
|
|
|
|
uint64_t Label::operator-(const Label& label) const {
|
|
uint64_t offset;
|
|
ALWAYS_EVALUATE_AND_ASSERT(IsKnownOffsetFrom(label, &offset));
|
|
return offset;
|
|
}
|
|
|
|
bool Label::IsKnownConstant(uint64_t* value_p) const {
|
|
Binding* base;
|
|
uint64_t addend;
|
|
value_->Get(&base, &addend);
|
|
if (base != NULL) return false;
|
|
if (value_p) *value_p = addend;
|
|
return true;
|
|
}
|
|
|
|
bool Label::IsKnownOffsetFrom(const Label& label, uint64_t* offset_p) const {
|
|
Binding *label_base, *this_base;
|
|
uint64_t label_addend, this_addend;
|
|
label.value_->Get(&label_base, &label_addend);
|
|
value_->Get(&this_base, &this_addend);
|
|
// If this and label are related, Get will find their final
|
|
// common ancestor, regardless of how indirect the relation is. This
|
|
// comparison also handles the constant vs. constant case.
|
|
if (this_base != label_base) return false;
|
|
if (offset_p) *offset_p = this_addend - label_addend;
|
|
return true;
|
|
}
|
|
|
|
Label::Binding::Binding() : base_(this), addend_(), reference_count_(1) {}
|
|
|
|
Label::Binding::Binding(uint64_t addend)
|
|
: base_(NULL), addend_(addend), reference_count_(1) {}
|
|
|
|
Label::Binding::~Binding() {
|
|
assert(reference_count_ == 0);
|
|
if (base_ && base_ != this && base_->Release()) delete base_;
|
|
}
|
|
|
|
void Label::Binding::Set(Binding* binding, uint64_t addend) {
|
|
if (!base_ && !binding) {
|
|
// We're equating two constants. This could be okay.
|
|
assert(addend_ == addend);
|
|
} else if (!base_) {
|
|
// We are a known constant, but BINDING may not be, so turn the
|
|
// tables and try to set BINDING's value instead.
|
|
binding->Set(NULL, addend_ - addend);
|
|
} else {
|
|
if (binding) {
|
|
// Find binding's final value. Since the final value is always either
|
|
// completely unconstrained or a constant, never a reference to
|
|
// another variable (otherwise, it wouldn't be final), this
|
|
// guarantees we won't create cycles here, even for code like this:
|
|
// l = m, m = n, n = l;
|
|
uint64_t binding_addend;
|
|
binding->Get(&binding, &binding_addend);
|
|
addend += binding_addend;
|
|
}
|
|
|
|
// It seems likely that setting a binding to itself is a bug
|
|
// (although I can imagine this might turn out to be helpful to
|
|
// permit).
|
|
assert(binding != this);
|
|
|
|
if (base_ != this) {
|
|
// Set the other bindings on our chain as well. Note that this
|
|
// is sufficient even though binding relationships form trees:
|
|
// All binding operations traverse their chains to the end, and
|
|
// all bindings related to us share some tail of our chain, so
|
|
// they will see the changes we make here.
|
|
base_->Set(binding, addend - addend_);
|
|
// We're not going to use base_ any more.
|
|
if (base_->Release()) delete base_;
|
|
}
|
|
|
|
// Adopt BINDING as our base. Note that it should be correct to
|
|
// acquire here, after the release above, even though the usual
|
|
// reference-counting rules call for acquiring first, and then
|
|
// releasing: the self-reference assertion above should have
|
|
// complained if BINDING were 'this' or anywhere along our chain,
|
|
// so we didn't release BINDING.
|
|
if (binding) binding->Acquire();
|
|
base_ = binding;
|
|
addend_ = addend;
|
|
}
|
|
}
|
|
|
|
void Label::Binding::Get(Binding** base, uint64_t* addend) {
|
|
if (base_ && base_ != this) {
|
|
// Recurse to find the end of our reference chain (the root of our
|
|
// tree), and then rewrite every binding along the chain to refer
|
|
// to it directly, adjusting addends appropriately. (This is why
|
|
// this member function isn't this-const.)
|
|
Binding* final_base;
|
|
uint64_t final_addend;
|
|
base_->Get(&final_base, &final_addend);
|
|
if (final_base) final_base->Acquire();
|
|
if (base_->Release()) delete base_;
|
|
base_ = final_base;
|
|
addend_ += final_addend;
|
|
}
|
|
*base = base_;
|
|
*addend = addend_;
|
|
}
|
|
|
|
template <typename Inserter>
|
|
static inline void InsertEndian(test_assembler::Endianness endianness,
|
|
size_t size, uint64_t number, Inserter dest) {
|
|
assert(size > 0);
|
|
if (endianness == kLittleEndian) {
|
|
for (size_t i = 0; i < size; i++) {
|
|
*dest++ = (char)(number & 0xff);
|
|
number >>= 8;
|
|
}
|
|
} else {
|
|
assert(endianness == kBigEndian);
|
|
// The loop condition is odd, but it's correct for size_t.
|
|
for (size_t i = size - 1; i < size; i--)
|
|
*dest++ = (char)((number >> (i * 8)) & 0xff);
|
|
}
|
|
}
|
|
|
|
Section& Section::Append(Endianness endianness, size_t size, uint64_t number) {
|
|
InsertEndian(endianness, size, number,
|
|
back_insert_iterator<string>(contents_));
|
|
return *this;
|
|
}
|
|
|
|
Section& Section::Append(Endianness endianness, size_t size,
|
|
const Label& label) {
|
|
// If this label's value is known, there's no reason to waste an
|
|
// entry in references_ on it.
|
|
uint64_t value;
|
|
if (label.IsKnownConstant(&value)) return Append(endianness, size, value);
|
|
|
|
// This will get caught when the references are resolved, but it's
|
|
// nicer to find out earlier.
|
|
assert(endianness != kUnsetEndian);
|
|
|
|
references_.push_back(Reference(contents_.size(), endianness, size, label));
|
|
contents_.append(size, 0);
|
|
return *this;
|
|
}
|
|
|
|
#define ENDIANNESS_L kLittleEndian
|
|
#define ENDIANNESS_B kBigEndian
|
|
#define ENDIANNESS(e) ENDIANNESS_##e
|
|
|
|
#define DEFINE_SHORT_APPEND_NUMBER_ENDIAN(e, bits) \
|
|
Section& Section::e##bits(uint##bits##_t v) { \
|
|
InsertEndian(ENDIANNESS(e), bits / 8, v, \
|
|
back_insert_iterator<string>(contents_)); \
|
|
return *this; \
|
|
}
|
|
|
|
#define DEFINE_SHORT_APPEND_LABEL_ENDIAN(e, bits) \
|
|
Section& Section::e##bits(const Label& v) { \
|
|
return Append(ENDIANNESS(e), bits / 8, v); \
|
|
}
|
|
|
|
// Define L16, B32, and friends.
|
|
#define DEFINE_SHORT_APPEND_ENDIAN(e, bits) \
|
|
DEFINE_SHORT_APPEND_NUMBER_ENDIAN(e, bits) \
|
|
DEFINE_SHORT_APPEND_LABEL_ENDIAN(e, bits)
|
|
|
|
DEFINE_SHORT_APPEND_LABEL_ENDIAN(L, 8);
|
|
DEFINE_SHORT_APPEND_LABEL_ENDIAN(B, 8);
|
|
DEFINE_SHORT_APPEND_ENDIAN(L, 16);
|
|
DEFINE_SHORT_APPEND_ENDIAN(L, 32);
|
|
DEFINE_SHORT_APPEND_ENDIAN(L, 64);
|
|
DEFINE_SHORT_APPEND_ENDIAN(B, 16);
|
|
DEFINE_SHORT_APPEND_ENDIAN(B, 32);
|
|
DEFINE_SHORT_APPEND_ENDIAN(B, 64);
|
|
|
|
#define DEFINE_SHORT_APPEND_NUMBER_DEFAULT(bits) \
|
|
Section& Section::D##bits(uint##bits##_t v) { \
|
|
InsertEndian(endianness_, bits / 8, v, \
|
|
back_insert_iterator<string>(contents_)); \
|
|
return *this; \
|
|
}
|
|
#define DEFINE_SHORT_APPEND_LABEL_DEFAULT(bits) \
|
|
Section& Section::D##bits(const Label& v) { \
|
|
return Append(endianness_, bits / 8, v); \
|
|
}
|
|
#define DEFINE_SHORT_APPEND_DEFAULT(bits) \
|
|
DEFINE_SHORT_APPEND_NUMBER_DEFAULT(bits) \
|
|
DEFINE_SHORT_APPEND_LABEL_DEFAULT(bits)
|
|
|
|
DEFINE_SHORT_APPEND_LABEL_DEFAULT(8)
|
|
DEFINE_SHORT_APPEND_DEFAULT(16);
|
|
DEFINE_SHORT_APPEND_DEFAULT(32);
|
|
DEFINE_SHORT_APPEND_DEFAULT(64);
|
|
|
|
Section& Section::LEB128(long long value) {
|
|
while (value < -0x40 || 0x3f < value) {
|
|
contents_ += (value & 0x7f) | 0x80;
|
|
if (value < 0)
|
|
value = (value >> 7) | ~(((unsigned long long)-1) >> 7);
|
|
else
|
|
value = (value >> 7);
|
|
}
|
|
contents_ += value & 0x7f;
|
|
return *this;
|
|
}
|
|
|
|
Section& Section::ULEB128(uint64_t value) {
|
|
while (value > 0x7f) {
|
|
contents_ += (value & 0x7f) | 0x80;
|
|
value = (value >> 7);
|
|
}
|
|
contents_ += value;
|
|
return *this;
|
|
}
|
|
|
|
Section& Section::Align(size_t alignment, uint8_t pad_byte) {
|
|
// ALIGNMENT must be a power of two.
|
|
assert(((alignment - 1) & alignment) == 0);
|
|
size_t new_size = (contents_.size() + alignment - 1) & ~(alignment - 1);
|
|
contents_.append(new_size - contents_.size(), pad_byte);
|
|
assert((contents_.size() & (alignment - 1)) == 0);
|
|
return *this;
|
|
}
|
|
|
|
bool Section::GetContents(string* contents) {
|
|
// For each label reference, find the label's value, and patch it into
|
|
// the section's contents.
|
|
for (size_t i = 0; i < references_.size(); i++) {
|
|
Reference& r = references_[i];
|
|
uint64_t value;
|
|
if (!r.label.IsKnownConstant(&value)) {
|
|
fprintf(stderr, "Undefined label #%zu at offset 0x%zx\n", i, r.offset);
|
|
return false;
|
|
}
|
|
assert(r.offset < contents_.size());
|
|
assert(contents_.size() - r.offset >= r.size);
|
|
InsertEndian(r.endianness, r.size, value, contents_.begin() + r.offset);
|
|
}
|
|
contents->clear();
|
|
std::swap(contents_, *contents);
|
|
references_.clear();
|
|
return true;
|
|
}
|
|
|
|
} // namespace test_assembler
|
|
} // namespace lul_test
|
|
|
|
namespace lul_test {
|
|
|
|
CFISection& CFISection::CIEHeader(uint64_t code_alignment_factor,
|
|
int data_alignment_factor,
|
|
unsigned return_address_register,
|
|
uint8_t version, const string& augmentation,
|
|
bool dwarf64) {
|
|
assert(!entry_length_);
|
|
entry_length_ = new PendingLength();
|
|
in_fde_ = false;
|
|
|
|
if (dwarf64) {
|
|
D32(kDwarf64InitialLengthMarker);
|
|
D64(entry_length_->length);
|
|
entry_length_->start = Here();
|
|
D64(eh_frame_ ? kEHFrame64CIEIdentifier : kDwarf64CIEIdentifier);
|
|
} else {
|
|
D32(entry_length_->length);
|
|
entry_length_->start = Here();
|
|
D32(eh_frame_ ? kEHFrame32CIEIdentifier : kDwarf32CIEIdentifier);
|
|
}
|
|
D8(version);
|
|
AppendCString(augmentation);
|
|
ULEB128(code_alignment_factor);
|
|
LEB128(data_alignment_factor);
|
|
if (version == 1)
|
|
D8(return_address_register);
|
|
else
|
|
ULEB128(return_address_register);
|
|
return *this;
|
|
}
|
|
|
|
CFISection& CFISection::FDEHeader(Label cie_pointer, uint64_t initial_location,
|
|
uint64_t address_range, bool dwarf64) {
|
|
assert(!entry_length_);
|
|
entry_length_ = new PendingLength();
|
|
in_fde_ = true;
|
|
fde_start_address_ = initial_location;
|
|
|
|
if (dwarf64) {
|
|
D32(0xffffffff);
|
|
D64(entry_length_->length);
|
|
entry_length_->start = Here();
|
|
if (eh_frame_)
|
|
D64(Here() - cie_pointer);
|
|
else
|
|
D64(cie_pointer);
|
|
} else {
|
|
D32(entry_length_->length);
|
|
entry_length_->start = Here();
|
|
if (eh_frame_)
|
|
D32(Here() - cie_pointer);
|
|
else
|
|
D32(cie_pointer);
|
|
}
|
|
EncodedPointer(initial_location);
|
|
// The FDE length in an .eh_frame section uses the same encoding as the
|
|
// initial location, but ignores the base address (selected by the upper
|
|
// nybble of the encoding), as it's a length, not an address that can be
|
|
// made relative.
|
|
EncodedPointer(address_range, DwarfPointerEncoding(pointer_encoding_ & 0x0f));
|
|
return *this;
|
|
}
|
|
|
|
CFISection& CFISection::FinishEntry() {
|
|
assert(entry_length_);
|
|
Align(address_size_, lul::DW_CFA_nop);
|
|
entry_length_->length = Here() - entry_length_->start;
|
|
delete entry_length_;
|
|
entry_length_ = NULL;
|
|
in_fde_ = false;
|
|
return *this;
|
|
}
|
|
|
|
CFISection& CFISection::EncodedPointer(uint64_t address,
|
|
DwarfPointerEncoding encoding,
|
|
const EncodedPointerBases& bases) {
|
|
// Omitted data is extremely easy to emit.
|
|
if (encoding == lul::DW_EH_PE_omit) return *this;
|
|
|
|
// If (encoding & lul::DW_EH_PE_indirect) != 0, then we assume
|
|
// that ADDRESS is the address at which the pointer is stored --- in
|
|
// other words, that bit has no effect on how we write the pointer.
|
|
encoding = DwarfPointerEncoding(encoding & ~lul::DW_EH_PE_indirect);
|
|
|
|
// Find the base address to which this pointer is relative. The upper
|
|
// nybble of the encoding specifies this.
|
|
uint64_t base;
|
|
switch (encoding & 0xf0) {
|
|
case lul::DW_EH_PE_absptr:
|
|
base = 0;
|
|
break;
|
|
case lul::DW_EH_PE_pcrel:
|
|
base = bases.cfi + Size();
|
|
break;
|
|
case lul::DW_EH_PE_textrel:
|
|
base = bases.text;
|
|
break;
|
|
case lul::DW_EH_PE_datarel:
|
|
base = bases.data;
|
|
break;
|
|
case lul::DW_EH_PE_funcrel:
|
|
base = fde_start_address_;
|
|
break;
|
|
case lul::DW_EH_PE_aligned:
|
|
base = 0;
|
|
break;
|
|
default:
|
|
abort();
|
|
};
|
|
|
|
// Make ADDRESS relative. Yes, this is appropriate even for "absptr"
|
|
// values; see gcc/unwind-pe.h.
|
|
address -= base;
|
|
|
|
// Align the pointer, if required.
|
|
if ((encoding & 0xf0) == lul::DW_EH_PE_aligned) Align(AddressSize());
|
|
|
|
// Append ADDRESS to this section in the appropriate form. For the
|
|
// fixed-width forms, we don't need to differentiate between signed and
|
|
// unsigned encodings, because ADDRESS has already been extended to 64
|
|
// bits before it was passed to us.
|
|
switch (encoding & 0x0f) {
|
|
case lul::DW_EH_PE_absptr:
|
|
Address(address);
|
|
break;
|
|
|
|
case lul::DW_EH_PE_uleb128:
|
|
ULEB128(address);
|
|
break;
|
|
|
|
case lul::DW_EH_PE_sleb128:
|
|
LEB128(address);
|
|
break;
|
|
|
|
case lul::DW_EH_PE_udata2:
|
|
case lul::DW_EH_PE_sdata2:
|
|
D16(address);
|
|
break;
|
|
|
|
case lul::DW_EH_PE_udata4:
|
|
case lul::DW_EH_PE_sdata4:
|
|
D32(address);
|
|
break;
|
|
|
|
case lul::DW_EH_PE_udata8:
|
|
case lul::DW_EH_PE_sdata8:
|
|
D64(address);
|
|
break;
|
|
|
|
default:
|
|
abort();
|
|
}
|
|
|
|
return *this;
|
|
};
|
|
|
|
} // namespace lul_test
|