743 lines
25 KiB
C++
743 lines
25 KiB
C++
// Copyright 2019 Google LLC
|
|
// SPDX-License-Identifier: Apache-2.0
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#include "hwy/nanobenchmark.h"
|
|
|
|
#ifndef __STDC_FORMAT_MACROS
|
|
#define __STDC_FORMAT_MACROS // before inttypes.h
|
|
#endif
|
|
#include <inttypes.h> // IWYU pragma: keep
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <time.h> // clock_gettime
|
|
|
|
#include <algorithm> // std::sort, std::find_if
|
|
#include <array>
|
|
#include <chrono> //NOLINT
|
|
#include <limits>
|
|
#include <numeric> // std::iota
|
|
#include <random>
|
|
#include <string>
|
|
#include <utility> // std::pair
|
|
#include <vector>
|
|
|
|
#if defined(_WIN32) || defined(_WIN64)
|
|
#ifndef NOMINMAX
|
|
#define NOMINMAX
|
|
#endif // NOMINMAX
|
|
#include <windows.h>
|
|
#endif
|
|
|
|
#if defined(__APPLE__)
|
|
#include <mach/mach.h>
|
|
#include <mach/mach_time.h>
|
|
#endif
|
|
|
|
#if defined(__HAIKU__)
|
|
#include <OS.h>
|
|
#endif
|
|
|
|
#include "hwy/base.h"
|
|
#if HWY_ARCH_PPC && defined(__GLIBC__)
|
|
#include <sys/platform/ppc.h> // NOLINT __ppc_get_timebase_freq
|
|
#elif HWY_ARCH_X86
|
|
|
|
#if HWY_COMPILER_MSVC
|
|
#include <intrin.h>
|
|
#else
|
|
#include <cpuid.h> // NOLINT
|
|
#endif // HWY_COMPILER_MSVC
|
|
|
|
#endif // HWY_ARCH_X86
|
|
|
|
namespace hwy {
|
|
namespace {
|
|
namespace timer {
|
|
|
|
// Ticks := platform-specific timer values (CPU cycles on x86). Must be
|
|
// unsigned to guarantee wraparound on overflow.
|
|
using Ticks = uint64_t;
|
|
|
|
// Start/Stop return absolute timestamps and must be placed immediately before
|
|
// and after the region to measure. We provide separate Start/Stop functions
|
|
// because they use different fences.
|
|
//
|
|
// Background: RDTSC is not 'serializing'; earlier instructions may complete
|
|
// after it, and/or later instructions may complete before it. 'Fences' ensure
|
|
// regions' elapsed times are independent of such reordering. The only
|
|
// documented unprivileged serializing instruction is CPUID, which acts as a
|
|
// full fence (no reordering across it in either direction). Unfortunately
|
|
// the latency of CPUID varies wildly (perhaps made worse by not initializing
|
|
// its EAX input). Because it cannot reliably be deducted from the region's
|
|
// elapsed time, it must not be included in the region to measure (i.e.
|
|
// between the two RDTSC).
|
|
//
|
|
// The newer RDTSCP is sometimes described as serializing, but it actually
|
|
// only serves as a half-fence with release semantics. Although all
|
|
// instructions in the region will complete before the final timestamp is
|
|
// captured, subsequent instructions may leak into the region and increase the
|
|
// elapsed time. Inserting another fence after the final RDTSCP would prevent
|
|
// such reordering without affecting the measured region.
|
|
//
|
|
// Fortunately, such a fence exists. The LFENCE instruction is only documented
|
|
// to delay later loads until earlier loads are visible. However, Intel's
|
|
// reference manual says it acts as a full fence (waiting until all earlier
|
|
// instructions have completed, and delaying later instructions until it
|
|
// completes). AMD assigns the same behavior to MFENCE.
|
|
//
|
|
// We need a fence before the initial RDTSC to prevent earlier instructions
|
|
// from leaking into the region, and arguably another after RDTSC to avoid
|
|
// region instructions from completing before the timestamp is recorded.
|
|
// When surrounded by fences, the additional RDTSCP half-fence provides no
|
|
// benefit, so the initial timestamp can be recorded via RDTSC, which has
|
|
// lower overhead than RDTSCP because it does not read TSC_AUX. In summary,
|
|
// we define Start = LFENCE/RDTSC/LFENCE; Stop = RDTSCP/LFENCE.
|
|
//
|
|
// Using Start+Start leads to higher variance and overhead than Stop+Stop.
|
|
// However, Stop+Stop includes an LFENCE in the region measurements, which
|
|
// adds a delay dependent on earlier loads. The combination of Start+Stop
|
|
// is faster than Start+Start and more consistent than Stop+Stop because
|
|
// the first LFENCE already delayed subsequent loads before the measured
|
|
// region. This combination seems not to have been considered in prior work:
|
|
// http://akaros.cs.berkeley.edu/lxr/akaros/kern/arch/x86/rdtsc_test.c
|
|
//
|
|
// Note: performance counters can measure 'exact' instructions-retired or
|
|
// (unhalted) cycle counts. The RDPMC instruction is not serializing and also
|
|
// requires fences. Unfortunately, it is not accessible on all OSes and we
|
|
// prefer to avoid kernel-mode drivers. Performance counters are also affected
|
|
// by several under/over-count errata, so we use the TSC instead.
|
|
|
|
// Returns a 64-bit timestamp in unit of 'ticks'; to convert to seconds,
|
|
// divide by InvariantTicksPerSecond.
|
|
inline Ticks Start() {
|
|
Ticks t;
|
|
#if HWY_ARCH_PPC && defined(__GLIBC__)
|
|
asm volatile("mfspr %0, %1" : "=r"(t) : "i"(268));
|
|
#elif HWY_ARCH_ARM_A64 && !HWY_COMPILER_MSVC
|
|
// pmccntr_el0 is privileged but cntvct_el0 is accessible in Linux and QEMU.
|
|
asm volatile("mrs %0, cntvct_el0" : "=r"(t));
|
|
#elif HWY_ARCH_X86 && HWY_COMPILER_MSVC
|
|
_ReadWriteBarrier();
|
|
_mm_lfence();
|
|
_ReadWriteBarrier();
|
|
t = __rdtsc();
|
|
_ReadWriteBarrier();
|
|
_mm_lfence();
|
|
_ReadWriteBarrier();
|
|
#elif HWY_ARCH_X86_64
|
|
asm volatile(
|
|
"lfence\n\t"
|
|
"rdtsc\n\t"
|
|
"shl $32, %%rdx\n\t"
|
|
"or %%rdx, %0\n\t"
|
|
"lfence"
|
|
: "=a"(t)
|
|
:
|
|
// "memory" avoids reordering. rdx = TSC >> 32.
|
|
// "cc" = flags modified by SHL.
|
|
: "rdx", "memory", "cc");
|
|
#elif HWY_ARCH_RVV
|
|
asm volatile("rdtime %0" : "=r"(t));
|
|
#elif defined(_WIN32) || defined(_WIN64)
|
|
LARGE_INTEGER counter;
|
|
(void)QueryPerformanceCounter(&counter);
|
|
t = counter.QuadPart;
|
|
#elif defined(__APPLE__)
|
|
t = mach_absolute_time();
|
|
#elif defined(__HAIKU__)
|
|
t = system_time_nsecs(); // since boot
|
|
#else // POSIX
|
|
timespec ts;
|
|
clock_gettime(CLOCK_MONOTONIC, &ts);
|
|
t = static_cast<Ticks>(ts.tv_sec * 1000000000LL + ts.tv_nsec);
|
|
#endif
|
|
return t;
|
|
}
|
|
|
|
// WARNING: on x86, caller must check HasRDTSCP before using this!
|
|
inline Ticks Stop() {
|
|
uint64_t t;
|
|
#if HWY_ARCH_PPC && defined(__GLIBC__)
|
|
asm volatile("mfspr %0, %1" : "=r"(t) : "i"(268));
|
|
#elif HWY_ARCH_ARM_A64 && !HWY_COMPILER_MSVC
|
|
// pmccntr_el0 is privileged but cntvct_el0 is accessible in Linux and QEMU.
|
|
asm volatile("mrs %0, cntvct_el0" : "=r"(t));
|
|
#elif HWY_ARCH_X86 && HWY_COMPILER_MSVC
|
|
_ReadWriteBarrier();
|
|
unsigned aux;
|
|
t = __rdtscp(&aux);
|
|
_ReadWriteBarrier();
|
|
_mm_lfence();
|
|
_ReadWriteBarrier();
|
|
#elif HWY_ARCH_X86_64
|
|
// Use inline asm because __rdtscp generates code to store TSC_AUX (ecx).
|
|
asm volatile(
|
|
"rdtscp\n\t"
|
|
"shl $32, %%rdx\n\t"
|
|
"or %%rdx, %0\n\t"
|
|
"lfence"
|
|
: "=a"(t)
|
|
:
|
|
// "memory" avoids reordering. rcx = TSC_AUX. rdx = TSC >> 32.
|
|
// "cc" = flags modified by SHL.
|
|
: "rcx", "rdx", "memory", "cc");
|
|
#else
|
|
t = Start();
|
|
#endif
|
|
return t;
|
|
}
|
|
|
|
} // namespace timer
|
|
|
|
namespace robust_statistics {
|
|
|
|
// Sorts integral values in ascending order (e.g. for Mode). About 3x faster
|
|
// than std::sort for input distributions with very few unique values.
|
|
template <class T>
|
|
void CountingSort(T* values, size_t num_values) {
|
|
// Unique values and their frequency (similar to flat_map).
|
|
using Unique = std::pair<T, int>;
|
|
std::vector<Unique> unique;
|
|
for (size_t i = 0; i < num_values; ++i) {
|
|
const T value = values[i];
|
|
const auto pos =
|
|
std::find_if(unique.begin(), unique.end(),
|
|
[value](const Unique u) { return u.first == value; });
|
|
if (pos == unique.end()) {
|
|
unique.push_back(std::make_pair(value, 1));
|
|
} else {
|
|
++pos->second;
|
|
}
|
|
}
|
|
|
|
// Sort in ascending order of value (pair.first).
|
|
std::sort(unique.begin(), unique.end());
|
|
|
|
// Write that many copies of each unique value to the array.
|
|
T* HWY_RESTRICT p = values;
|
|
for (const auto& value_count : unique) {
|
|
std::fill(p, p + value_count.second, value_count.first);
|
|
p += value_count.second;
|
|
}
|
|
NANOBENCHMARK_CHECK(p == values + num_values);
|
|
}
|
|
|
|
// @return i in [idx_begin, idx_begin + half_count) that minimizes
|
|
// sorted[i + half_count] - sorted[i].
|
|
template <typename T>
|
|
size_t MinRange(const T* const HWY_RESTRICT sorted, const size_t idx_begin,
|
|
const size_t half_count) {
|
|
T min_range = std::numeric_limits<T>::max();
|
|
size_t min_idx = 0;
|
|
|
|
for (size_t idx = idx_begin; idx < idx_begin + half_count; ++idx) {
|
|
NANOBENCHMARK_CHECK(sorted[idx] <= sorted[idx + half_count]);
|
|
const T range = sorted[idx + half_count] - sorted[idx];
|
|
if (range < min_range) {
|
|
min_range = range;
|
|
min_idx = idx;
|
|
}
|
|
}
|
|
|
|
return min_idx;
|
|
}
|
|
|
|
// Returns an estimate of the mode by calling MinRange on successively
|
|
// halved intervals. "sorted" must be in ascending order. This is the
|
|
// Half Sample Mode estimator proposed by Bickel in "On a fast, robust
|
|
// estimator of the mode", with complexity O(N log N). The mode is less
|
|
// affected by outliers in highly-skewed distributions than the median.
|
|
// The averaging operation below assumes "T" is an unsigned integer type.
|
|
template <typename T>
|
|
T ModeOfSorted(const T* const HWY_RESTRICT sorted, const size_t num_values) {
|
|
size_t idx_begin = 0;
|
|
size_t half_count = num_values / 2;
|
|
while (half_count > 1) {
|
|
idx_begin = MinRange(sorted, idx_begin, half_count);
|
|
half_count >>= 1;
|
|
}
|
|
|
|
const T x = sorted[idx_begin + 0];
|
|
if (half_count == 0) {
|
|
return x;
|
|
}
|
|
NANOBENCHMARK_CHECK(half_count == 1);
|
|
const T average = (x + sorted[idx_begin + 1] + 1) / 2;
|
|
return average;
|
|
}
|
|
|
|
// Returns the mode. Side effect: sorts "values".
|
|
template <typename T>
|
|
T Mode(T* values, const size_t num_values) {
|
|
CountingSort(values, num_values);
|
|
return ModeOfSorted(values, num_values);
|
|
}
|
|
|
|
template <typename T, size_t N>
|
|
T Mode(T (&values)[N]) {
|
|
return Mode(&values[0], N);
|
|
}
|
|
|
|
// Returns the median value. Side effect: sorts "values".
|
|
template <typename T>
|
|
T Median(T* values, const size_t num_values) {
|
|
NANOBENCHMARK_CHECK(!values->empty());
|
|
std::sort(values, values + num_values);
|
|
const size_t half = num_values / 2;
|
|
// Odd count: return middle
|
|
if (num_values % 2) {
|
|
return values[half];
|
|
}
|
|
// Even count: return average of middle two.
|
|
return (values[half] + values[half - 1] + 1) / 2;
|
|
}
|
|
|
|
// Returns a robust measure of variability.
|
|
template <typename T>
|
|
T MedianAbsoluteDeviation(const T* values, const size_t num_values,
|
|
const T median) {
|
|
NANOBENCHMARK_CHECK(num_values != 0);
|
|
std::vector<T> abs_deviations;
|
|
abs_deviations.reserve(num_values);
|
|
for (size_t i = 0; i < num_values; ++i) {
|
|
const int64_t abs = std::abs(static_cast<int64_t>(values[i]) -
|
|
static_cast<int64_t>(median));
|
|
abs_deviations.push_back(static_cast<T>(abs));
|
|
}
|
|
return Median(abs_deviations.data(), num_values);
|
|
}
|
|
|
|
} // namespace robust_statistics
|
|
} // namespace
|
|
namespace platform {
|
|
namespace {
|
|
|
|
// Measures the actual current frequency of Ticks. We cannot rely on the nominal
|
|
// frequency encoded in x86 BrandString because it is misleading on M1 Rosetta,
|
|
// and not reported by AMD. CPUID 0x15 is also not yet widely supported. Also
|
|
// used on RISC-V and aarch64.
|
|
HWY_MAYBE_UNUSED double MeasureNominalClockRate() {
|
|
double max_ticks_per_sec = 0.0;
|
|
// Arbitrary, enough to ignore 2 outliers without excessive init time.
|
|
for (int rep = 0; rep < 3; ++rep) {
|
|
auto time0 = std::chrono::steady_clock::now();
|
|
using Time = decltype(time0);
|
|
const timer::Ticks ticks0 = timer::Start();
|
|
const Time time_min = time0 + std::chrono::milliseconds(10);
|
|
|
|
Time time1;
|
|
timer::Ticks ticks1;
|
|
for (;;) {
|
|
time1 = std::chrono::steady_clock::now();
|
|
// Ideally this would be Stop, but that requires RDTSCP on x86. To avoid
|
|
// another codepath, just use Start instead. now() presumably has its own
|
|
// fence-like behavior.
|
|
ticks1 = timer::Start(); // Do not use Stop, see comment above
|
|
if (time1 >= time_min) break;
|
|
}
|
|
|
|
const double dticks = static_cast<double>(ticks1 - ticks0);
|
|
std::chrono::duration<double, std::ratio<1>> dtime = time1 - time0;
|
|
const double ticks_per_sec = dticks / dtime.count();
|
|
max_ticks_per_sec = std::max(max_ticks_per_sec, ticks_per_sec);
|
|
}
|
|
return max_ticks_per_sec;
|
|
}
|
|
|
|
#if HWY_ARCH_X86
|
|
|
|
void Cpuid(const uint32_t level, const uint32_t count,
|
|
uint32_t* HWY_RESTRICT abcd) {
|
|
#if HWY_COMPILER_MSVC
|
|
int regs[4];
|
|
__cpuidex(regs, level, count);
|
|
for (int i = 0; i < 4; ++i) {
|
|
abcd[i] = regs[i];
|
|
}
|
|
#else
|
|
uint32_t a;
|
|
uint32_t b;
|
|
uint32_t c;
|
|
uint32_t d;
|
|
__cpuid_count(level, count, a, b, c, d);
|
|
abcd[0] = a;
|
|
abcd[1] = b;
|
|
abcd[2] = c;
|
|
abcd[3] = d;
|
|
#endif
|
|
}
|
|
|
|
bool HasRDTSCP() {
|
|
uint32_t abcd[4];
|
|
Cpuid(0x80000001U, 0, abcd); // Extended feature flags
|
|
return (abcd[3] & (1u << 27)) != 0; // RDTSCP
|
|
}
|
|
|
|
std::string BrandString() {
|
|
char brand_string[49];
|
|
std::array<uint32_t, 4> abcd;
|
|
|
|
// Check if brand string is supported (it is on all reasonable Intel/AMD)
|
|
Cpuid(0x80000000U, 0, abcd.data());
|
|
if (abcd[0] < 0x80000004U) {
|
|
return std::string();
|
|
}
|
|
|
|
for (size_t i = 0; i < 3; ++i) {
|
|
Cpuid(static_cast<uint32_t>(0x80000002U + i), 0, abcd.data());
|
|
CopyBytes<sizeof(abcd)>(&abcd[0], brand_string + i * 16); // not same size
|
|
}
|
|
brand_string[48] = 0;
|
|
return brand_string;
|
|
}
|
|
|
|
#endif // HWY_ARCH_X86
|
|
|
|
} // namespace
|
|
|
|
HWY_DLLEXPORT double InvariantTicksPerSecond() {
|
|
#if HWY_ARCH_PPC && defined(__GLIBC__)
|
|
return static_cast<double>(__ppc_get_timebase_freq());
|
|
#elif HWY_ARCH_X86 || HWY_ARCH_RVV || (HWY_ARCH_ARM_A64 && !HWY_COMPILER_MSVC)
|
|
// We assume the x86 TSC is invariant; it is on all recent Intel/AMD CPUs.
|
|
static const double freq = MeasureNominalClockRate();
|
|
return freq;
|
|
#elif defined(_WIN32) || defined(_WIN64)
|
|
LARGE_INTEGER freq;
|
|
(void)QueryPerformanceFrequency(&freq);
|
|
return static_cast<double>(freq.QuadPart);
|
|
#elif defined(__APPLE__)
|
|
// https://developer.apple.com/library/mac/qa/qa1398/_index.html
|
|
mach_timebase_info_data_t timebase;
|
|
(void)mach_timebase_info(&timebase);
|
|
return static_cast<double>(timebase.denom) / timebase.numer * 1E9;
|
|
#else
|
|
return 1E9; // Haiku and clock_gettime return nanoseconds.
|
|
#endif
|
|
}
|
|
|
|
HWY_DLLEXPORT double Now() {
|
|
static const double mul = 1.0 / InvariantTicksPerSecond();
|
|
return static_cast<double>(timer::Start()) * mul;
|
|
}
|
|
|
|
HWY_DLLEXPORT uint64_t TimerResolution() {
|
|
#if HWY_ARCH_X86
|
|
bool can_use_stop = platform::HasRDTSCP();
|
|
#else
|
|
constexpr bool can_use_stop = true;
|
|
#endif
|
|
|
|
// Nested loop avoids exceeding stack/L1 capacity.
|
|
timer::Ticks repetitions[Params::kTimerSamples];
|
|
for (size_t rep = 0; rep < Params::kTimerSamples; ++rep) {
|
|
timer::Ticks samples[Params::kTimerSamples];
|
|
if (can_use_stop) {
|
|
for (size_t i = 0; i < Params::kTimerSamples; ++i) {
|
|
const timer::Ticks t0 = timer::Start();
|
|
const timer::Ticks t1 = timer::Stop(); // we checked HasRDTSCP above
|
|
samples[i] = t1 - t0;
|
|
}
|
|
} else {
|
|
for (size_t i = 0; i < Params::kTimerSamples; ++i) {
|
|
const timer::Ticks t0 = timer::Start();
|
|
const timer::Ticks t1 = timer::Start(); // do not use Stop, see above
|
|
samples[i] = t1 - t0;
|
|
}
|
|
}
|
|
repetitions[rep] = robust_statistics::Mode(samples);
|
|
}
|
|
return robust_statistics::Mode(repetitions);
|
|
}
|
|
|
|
} // namespace platform
|
|
namespace {
|
|
|
|
static const timer::Ticks timer_resolution = platform::TimerResolution();
|
|
|
|
// Estimates the expected value of "lambda" values with a variable number of
|
|
// samples until the variability "rel_mad" is less than "max_rel_mad".
|
|
template <class Lambda>
|
|
timer::Ticks SampleUntilStable(const double max_rel_mad, double* rel_mad,
|
|
const Params& p, const Lambda& lambda) {
|
|
// Choose initial samples_per_eval based on a single estimated duration.
|
|
timer::Ticks t0 = timer::Start();
|
|
lambda();
|
|
timer::Ticks t1 = timer::Stop(); // Caller checks HasRDTSCP
|
|
timer::Ticks est = t1 - t0;
|
|
static const double ticks_per_second = platform::InvariantTicksPerSecond();
|
|
const size_t ticks_per_eval =
|
|
static_cast<size_t>(ticks_per_second * p.seconds_per_eval);
|
|
size_t samples_per_eval = est == 0
|
|
? p.min_samples_per_eval
|
|
: static_cast<size_t>(ticks_per_eval / est);
|
|
samples_per_eval = HWY_MAX(samples_per_eval, p.min_samples_per_eval);
|
|
|
|
std::vector<timer::Ticks> samples;
|
|
samples.reserve(1 + samples_per_eval);
|
|
samples.push_back(est);
|
|
|
|
// Percentage is too strict for tiny differences, so also allow a small
|
|
// absolute "median absolute deviation".
|
|
const timer::Ticks max_abs_mad = (timer_resolution + 99) / 100;
|
|
*rel_mad = 0.0; // ensure initialized
|
|
|
|
for (size_t eval = 0; eval < p.max_evals; ++eval, samples_per_eval *= 2) {
|
|
samples.reserve(samples.size() + samples_per_eval);
|
|
for (size_t i = 0; i < samples_per_eval; ++i) {
|
|
t0 = timer::Start();
|
|
lambda();
|
|
t1 = timer::Stop(); // Caller checks HasRDTSCP
|
|
samples.push_back(t1 - t0);
|
|
}
|
|
|
|
if (samples.size() >= p.min_mode_samples) {
|
|
est = robust_statistics::Mode(samples.data(), samples.size());
|
|
} else {
|
|
// For "few" (depends also on the variance) samples, Median is safer.
|
|
est = robust_statistics::Median(samples.data(), samples.size());
|
|
}
|
|
NANOBENCHMARK_CHECK(est != 0);
|
|
|
|
// Median absolute deviation (mad) is a robust measure of 'variability'.
|
|
const timer::Ticks abs_mad = robust_statistics::MedianAbsoluteDeviation(
|
|
samples.data(), samples.size(), est);
|
|
*rel_mad = static_cast<double>(abs_mad) / static_cast<double>(est);
|
|
|
|
if (*rel_mad <= max_rel_mad || abs_mad <= max_abs_mad) {
|
|
if (p.verbose) {
|
|
printf("%6" PRIu64 " samples => %5" PRIu64 " (abs_mad=%4" PRIu64
|
|
", rel_mad=%4.2f%%)\n",
|
|
static_cast<uint64_t>(samples.size()),
|
|
static_cast<uint64_t>(est), static_cast<uint64_t>(abs_mad),
|
|
*rel_mad * 100.0);
|
|
}
|
|
return est;
|
|
}
|
|
}
|
|
|
|
if (p.verbose) {
|
|
printf("WARNING: rel_mad=%4.2f%% still exceeds %4.2f%% after %6" PRIu64
|
|
" samples.\n",
|
|
*rel_mad * 100.0, max_rel_mad * 100.0,
|
|
static_cast<uint64_t>(samples.size()));
|
|
}
|
|
return est;
|
|
}
|
|
|
|
using InputVec = std::vector<FuncInput>;
|
|
|
|
// Returns vector of unique input values.
|
|
InputVec UniqueInputs(const FuncInput* inputs, const size_t num_inputs) {
|
|
InputVec unique(inputs, inputs + num_inputs);
|
|
std::sort(unique.begin(), unique.end());
|
|
unique.erase(std::unique(unique.begin(), unique.end()), unique.end());
|
|
return unique;
|
|
}
|
|
|
|
// Returns how often we need to call func for sufficient precision.
|
|
size_t NumSkip(const Func func, const uint8_t* arg, const InputVec& unique,
|
|
const Params& p) {
|
|
// Min elapsed ticks for any input.
|
|
timer::Ticks min_duration = ~timer::Ticks(0);
|
|
|
|
for (const FuncInput input : unique) {
|
|
double rel_mad;
|
|
const timer::Ticks total = SampleUntilStable(
|
|
p.target_rel_mad, &rel_mad, p,
|
|
[func, arg, input]() { PreventElision(func(arg, input)); });
|
|
min_duration = HWY_MIN(min_duration, total - timer_resolution);
|
|
}
|
|
|
|
// Number of repetitions required to reach the target resolution.
|
|
const size_t max_skip = p.precision_divisor;
|
|
// Number of repetitions given the estimated duration.
|
|
const size_t num_skip =
|
|
min_duration == 0
|
|
? 0
|
|
: static_cast<size_t>((max_skip + min_duration - 1) / min_duration);
|
|
if (p.verbose) {
|
|
printf("res=%" PRIu64 " max_skip=%" PRIu64 " min_dur=%" PRIu64
|
|
" num_skip=%" PRIu64 "\n",
|
|
static_cast<uint64_t>(timer_resolution),
|
|
static_cast<uint64_t>(max_skip), static_cast<uint64_t>(min_duration),
|
|
static_cast<uint64_t>(num_skip));
|
|
}
|
|
return num_skip;
|
|
}
|
|
|
|
// Replicates inputs until we can omit "num_skip" occurrences of an input.
|
|
InputVec ReplicateInputs(const FuncInput* inputs, const size_t num_inputs,
|
|
const size_t num_unique, const size_t num_skip,
|
|
const Params& p) {
|
|
InputVec full;
|
|
if (num_unique == 1) {
|
|
full.assign(p.subset_ratio * num_skip, inputs[0]);
|
|
return full;
|
|
}
|
|
|
|
full.reserve(p.subset_ratio * num_skip * num_inputs);
|
|
for (size_t i = 0; i < p.subset_ratio * num_skip; ++i) {
|
|
full.insert(full.end(), inputs, inputs + num_inputs);
|
|
}
|
|
std::mt19937 rng;
|
|
std::shuffle(full.begin(), full.end(), rng);
|
|
return full;
|
|
}
|
|
|
|
// Copies the "full" to "subset" in the same order, but with "num_skip"
|
|
// randomly selected occurrences of "input_to_skip" removed.
|
|
void FillSubset(const InputVec& full, const FuncInput input_to_skip,
|
|
const size_t num_skip, InputVec* subset) {
|
|
const size_t count =
|
|
static_cast<size_t>(std::count(full.begin(), full.end(), input_to_skip));
|
|
// Generate num_skip random indices: which occurrence to skip.
|
|
std::vector<uint32_t> omit(count);
|
|
std::iota(omit.begin(), omit.end(), 0);
|
|
// omit[] is the same on every call, but that's OK because they identify the
|
|
// Nth instance of input_to_skip, so the position within full[] differs.
|
|
std::mt19937 rng;
|
|
std::shuffle(omit.begin(), omit.end(), rng);
|
|
omit.resize(num_skip);
|
|
std::sort(omit.begin(), omit.end());
|
|
|
|
uint32_t occurrence = ~0u; // 0 after preincrement
|
|
size_t idx_omit = 0; // cursor within omit[]
|
|
size_t idx_subset = 0; // cursor within *subset
|
|
for (const FuncInput next : full) {
|
|
if (next == input_to_skip) {
|
|
++occurrence;
|
|
// Haven't removed enough already
|
|
if (idx_omit < num_skip) {
|
|
// This one is up for removal
|
|
if (occurrence == omit[idx_omit]) {
|
|
++idx_omit;
|
|
continue;
|
|
}
|
|
}
|
|
}
|
|
if (idx_subset < subset->size()) {
|
|
(*subset)[idx_subset++] = next;
|
|
}
|
|
}
|
|
NANOBENCHMARK_CHECK(idx_subset == subset->size());
|
|
NANOBENCHMARK_CHECK(idx_omit == omit.size());
|
|
NANOBENCHMARK_CHECK(occurrence == count - 1);
|
|
}
|
|
|
|
// Returns total ticks elapsed for all inputs.
|
|
timer::Ticks TotalDuration(const Func func, const uint8_t* arg,
|
|
const InputVec* inputs, const Params& p,
|
|
double* max_rel_mad) {
|
|
double rel_mad;
|
|
const timer::Ticks duration =
|
|
SampleUntilStable(p.target_rel_mad, &rel_mad, p, [func, arg, inputs]() {
|
|
for (const FuncInput input : *inputs) {
|
|
PreventElision(func(arg, input));
|
|
}
|
|
});
|
|
*max_rel_mad = HWY_MAX(*max_rel_mad, rel_mad);
|
|
return duration;
|
|
}
|
|
|
|
// (Nearly) empty Func for measuring timer overhead/resolution.
|
|
HWY_NOINLINE FuncOutput EmptyFunc(const void* /*arg*/, const FuncInput input) {
|
|
return input;
|
|
}
|
|
|
|
// Returns overhead of accessing inputs[] and calling a function; this will
|
|
// be deducted from future TotalDuration return values.
|
|
timer::Ticks Overhead(const uint8_t* arg, const InputVec* inputs,
|
|
const Params& p) {
|
|
double rel_mad;
|
|
// Zero tolerance because repeatability is crucial and EmptyFunc is fast.
|
|
return SampleUntilStable(0.0, &rel_mad, p, [arg, inputs]() {
|
|
for (const FuncInput input : *inputs) {
|
|
PreventElision(EmptyFunc(arg, input));
|
|
}
|
|
});
|
|
}
|
|
|
|
} // namespace
|
|
|
|
HWY_DLLEXPORT int Unpredictable1() { return timer::Start() != ~0ULL; }
|
|
|
|
HWY_DLLEXPORT size_t Measure(const Func func, const uint8_t* arg,
|
|
const FuncInput* inputs, const size_t num_inputs,
|
|
Result* results, const Params& p) {
|
|
NANOBENCHMARK_CHECK(num_inputs != 0);
|
|
|
|
#if HWY_ARCH_X86
|
|
if (!platform::HasRDTSCP()) {
|
|
fprintf(stderr, "CPU '%s' does not support RDTSCP, skipping benchmark.\n",
|
|
platform::BrandString().c_str());
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
const InputVec& unique = UniqueInputs(inputs, num_inputs);
|
|
|
|
const size_t num_skip = NumSkip(func, arg, unique, p); // never 0
|
|
if (num_skip == 0) return 0; // NumSkip already printed error message
|
|
// (slightly less work on x86 to cast from signed integer)
|
|
const float mul = 1.0f / static_cast<float>(static_cast<int>(num_skip));
|
|
|
|
const InputVec& full =
|
|
ReplicateInputs(inputs, num_inputs, unique.size(), num_skip, p);
|
|
InputVec subset(full.size() - num_skip);
|
|
|
|
const timer::Ticks overhead = Overhead(arg, &full, p);
|
|
const timer::Ticks overhead_skip = Overhead(arg, &subset, p);
|
|
if (overhead < overhead_skip) {
|
|
fprintf(stderr, "Measurement failed: overhead %" PRIu64 " < %" PRIu64 "\n",
|
|
static_cast<uint64_t>(overhead),
|
|
static_cast<uint64_t>(overhead_skip));
|
|
return 0;
|
|
}
|
|
|
|
if (p.verbose) {
|
|
printf("#inputs=%5" PRIu64 ",%5" PRIu64 " overhead=%5" PRIu64 ",%5" PRIu64
|
|
"\n",
|
|
static_cast<uint64_t>(full.size()),
|
|
static_cast<uint64_t>(subset.size()),
|
|
static_cast<uint64_t>(overhead),
|
|
static_cast<uint64_t>(overhead_skip));
|
|
}
|
|
|
|
double max_rel_mad = 0.0;
|
|
const timer::Ticks total = TotalDuration(func, arg, &full, p, &max_rel_mad);
|
|
|
|
for (size_t i = 0; i < unique.size(); ++i) {
|
|
FillSubset(full, unique[i], num_skip, &subset);
|
|
const timer::Ticks total_skip =
|
|
TotalDuration(func, arg, &subset, p, &max_rel_mad);
|
|
|
|
if (total < total_skip) {
|
|
fprintf(stderr, "Measurement failed: total %" PRIu64 " < %" PRIu64 "\n",
|
|
static_cast<uint64_t>(total), static_cast<uint64_t>(total_skip));
|
|
return 0;
|
|
}
|
|
|
|
const timer::Ticks duration =
|
|
(total - overhead) - (total_skip - overhead_skip);
|
|
results[i].input = unique[i];
|
|
results[i].ticks = static_cast<float>(duration) * mul;
|
|
results[i].variability = static_cast<float>(max_rel_mad);
|
|
}
|
|
|
|
return unique.size();
|
|
}
|
|
|
|
} // namespace hwy
|