563 lines
21 KiB
C++
563 lines
21 KiB
C++
// Copyright (c) the JPEG XL Project Authors. All rights reserved.
|
|
//
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
#include "lib/jpegli/adaptive_quantization.h"
|
|
|
|
#include <jxl/types.h>
|
|
#include <stddef.h>
|
|
#include <stdlib.h>
|
|
|
|
#include <algorithm>
|
|
#include <cmath>
|
|
#include <limits>
|
|
#include <string>
|
|
#include <vector>
|
|
|
|
#undef HWY_TARGET_INCLUDE
|
|
#define HWY_TARGET_INCLUDE "lib/jpegli/adaptive_quantization.cc"
|
|
#include <hwy/foreach_target.h>
|
|
#include <hwy/highway.h>
|
|
|
|
#include "lib/jpegli/encode_internal.h"
|
|
#include "lib/jxl/base/compiler_specific.h"
|
|
#include "lib/jxl/base/status.h"
|
|
HWY_BEFORE_NAMESPACE();
|
|
namespace jpegli {
|
|
namespace HWY_NAMESPACE {
|
|
namespace {
|
|
|
|
// These templates are not found via ADL.
|
|
using hwy::HWY_NAMESPACE::AbsDiff;
|
|
using hwy::HWY_NAMESPACE::Add;
|
|
using hwy::HWY_NAMESPACE::And;
|
|
using hwy::HWY_NAMESPACE::Div;
|
|
using hwy::HWY_NAMESPACE::Floor;
|
|
using hwy::HWY_NAMESPACE::GetLane;
|
|
using hwy::HWY_NAMESPACE::Max;
|
|
using hwy::HWY_NAMESPACE::Min;
|
|
using hwy::HWY_NAMESPACE::Mul;
|
|
using hwy::HWY_NAMESPACE::MulAdd;
|
|
using hwy::HWY_NAMESPACE::NegMulAdd;
|
|
using hwy::HWY_NAMESPACE::Rebind;
|
|
using hwy::HWY_NAMESPACE::ShiftLeft;
|
|
using hwy::HWY_NAMESPACE::ShiftRight;
|
|
using hwy::HWY_NAMESPACE::Sqrt;
|
|
using hwy::HWY_NAMESPACE::Sub;
|
|
using hwy::HWY_NAMESPACE::ZeroIfNegative;
|
|
|
|
constexpr float kInputScaling = 1.0f / 255.0f;
|
|
|
|
// Primary template: default to actual division.
|
|
template <typename T, class V>
|
|
struct FastDivision {
|
|
HWY_INLINE V operator()(const V n, const V d) const { return n / d; }
|
|
};
|
|
// Partial specialization for float vectors.
|
|
template <class V>
|
|
struct FastDivision<float, V> {
|
|
// One Newton-Raphson iteration.
|
|
static HWY_INLINE V ReciprocalNR(const V x) {
|
|
const auto rcp = ApproximateReciprocal(x);
|
|
const auto sum = Add(rcp, rcp);
|
|
const auto x_rcp = Mul(x, rcp);
|
|
return NegMulAdd(x_rcp, rcp, sum);
|
|
}
|
|
|
|
V operator()(const V n, const V d) const {
|
|
#if JXL_TRUE // Faster on SKX
|
|
return Div(n, d);
|
|
#else
|
|
return n * ReciprocalNR(d);
|
|
#endif
|
|
}
|
|
};
|
|
|
|
// Approximates smooth functions via rational polynomials (i.e. dividing two
|
|
// polynomials). Evaluates polynomials via Horner's scheme, which is faster than
|
|
// Clenshaw recurrence for Chebyshev polynomials. LoadDup128 allows us to
|
|
// specify constants (replicated 4x) independently of the lane count.
|
|
template <size_t NP, size_t NQ, class D, class V, typename T>
|
|
HWY_INLINE HWY_MAYBE_UNUSED V EvalRationalPolynomial(const D d, const V x,
|
|
const T (&p)[NP],
|
|
const T (&q)[NQ]) {
|
|
constexpr size_t kDegP = NP / 4 - 1;
|
|
constexpr size_t kDegQ = NQ / 4 - 1;
|
|
auto yp = LoadDup128(d, &p[kDegP * 4]);
|
|
auto yq = LoadDup128(d, &q[kDegQ * 4]);
|
|
// We use pointer arithmetic to refer to &p[(kDegP - n) * 4] to avoid a
|
|
// compiler warning that the index is out of bounds since we are already
|
|
// checking that it is not out of bounds with (kDegP >= n) and the access
|
|
// will be optimized away. Similarly with q and kDegQ.
|
|
HWY_FENCE;
|
|
if (kDegP >= 1) yp = MulAdd(yp, x, LoadDup128(d, p + ((kDegP - 1) * 4)));
|
|
if (kDegQ >= 1) yq = MulAdd(yq, x, LoadDup128(d, q + ((kDegQ - 1) * 4)));
|
|
HWY_FENCE;
|
|
if (kDegP >= 2) yp = MulAdd(yp, x, LoadDup128(d, p + ((kDegP - 2) * 4)));
|
|
if (kDegQ >= 2) yq = MulAdd(yq, x, LoadDup128(d, q + ((kDegQ - 2) * 4)));
|
|
HWY_FENCE;
|
|
if (kDegP >= 3) yp = MulAdd(yp, x, LoadDup128(d, p + ((kDegP - 3) * 4)));
|
|
if (kDegQ >= 3) yq = MulAdd(yq, x, LoadDup128(d, q + ((kDegQ - 3) * 4)));
|
|
HWY_FENCE;
|
|
if (kDegP >= 4) yp = MulAdd(yp, x, LoadDup128(d, p + ((kDegP - 4) * 4)));
|
|
if (kDegQ >= 4) yq = MulAdd(yq, x, LoadDup128(d, q + ((kDegQ - 4) * 4)));
|
|
HWY_FENCE;
|
|
if (kDegP >= 5) yp = MulAdd(yp, x, LoadDup128(d, p + ((kDegP - 5) * 4)));
|
|
if (kDegQ >= 5) yq = MulAdd(yq, x, LoadDup128(d, q + ((kDegQ - 5) * 4)));
|
|
HWY_FENCE;
|
|
if (kDegP >= 6) yp = MulAdd(yp, x, LoadDup128(d, p + ((kDegP - 6) * 4)));
|
|
if (kDegQ >= 6) yq = MulAdd(yq, x, LoadDup128(d, q + ((kDegQ - 6) * 4)));
|
|
HWY_FENCE;
|
|
if (kDegP >= 7) yp = MulAdd(yp, x, LoadDup128(d, p + ((kDegP - 7) * 4)));
|
|
if (kDegQ >= 7) yq = MulAdd(yq, x, LoadDup128(d, q + ((kDegQ - 7) * 4)));
|
|
|
|
return FastDivision<T, V>()(yp, yq);
|
|
}
|
|
|
|
// Computes base-2 logarithm like std::log2. Undefined if negative / NaN.
|
|
// L1 error ~3.9E-6
|
|
template <class DF, class V>
|
|
V FastLog2f(const DF df, V x) {
|
|
// 2,2 rational polynomial approximation of std::log1p(x) / std::log(2).
|
|
HWY_ALIGN const float p[4 * (2 + 1)] = {HWY_REP4(-1.8503833400518310E-06f),
|
|
HWY_REP4(1.4287160470083755E+00f),
|
|
HWY_REP4(7.4245873327820566E-01f)};
|
|
HWY_ALIGN const float q[4 * (2 + 1)] = {HWY_REP4(9.9032814277590719E-01f),
|
|
HWY_REP4(1.0096718572241148E+00f),
|
|
HWY_REP4(1.7409343003366853E-01f)};
|
|
|
|
const Rebind<int32_t, DF> di;
|
|
const auto x_bits = BitCast(di, x);
|
|
|
|
// Range reduction to [-1/3, 1/3] - 3 integer, 2 float ops
|
|
const auto exp_bits = Sub(x_bits, Set(di, 0x3f2aaaab)); // = 2/3
|
|
// Shifted exponent = log2; also used to clear mantissa.
|
|
const auto exp_shifted = ShiftRight<23>(exp_bits);
|
|
const auto mantissa = BitCast(df, Sub(x_bits, ShiftLeft<23>(exp_shifted)));
|
|
const auto exp_val = ConvertTo(df, exp_shifted);
|
|
return Add(EvalRationalPolynomial(df, Sub(mantissa, Set(df, 1.0f)), p, q),
|
|
exp_val);
|
|
}
|
|
|
|
// max relative error ~3e-7
|
|
template <class DF, class V>
|
|
V FastPow2f(const DF df, V x) {
|
|
const Rebind<int32_t, DF> di;
|
|
auto floorx = Floor(x);
|
|
auto exp =
|
|
BitCast(df, ShiftLeft<23>(Add(ConvertTo(di, floorx), Set(di, 127))));
|
|
auto frac = Sub(x, floorx);
|
|
auto num = Add(frac, Set(df, 1.01749063e+01));
|
|
num = MulAdd(num, frac, Set(df, 4.88687798e+01));
|
|
num = MulAdd(num, frac, Set(df, 9.85506591e+01));
|
|
num = Mul(num, exp);
|
|
auto den = MulAdd(frac, Set(df, 2.10242958e-01), Set(df, -2.22328856e-02));
|
|
den = MulAdd(den, frac, Set(df, -1.94414990e+01));
|
|
den = MulAdd(den, frac, Set(df, 9.85506633e+01));
|
|
return Div(num, den);
|
|
}
|
|
|
|
inline float FastPow2f(float f) {
|
|
HWY_CAPPED(float, 1) D;
|
|
return GetLane(FastPow2f(D, Set(D, f)));
|
|
}
|
|
|
|
// The following functions modulate an exponent (out_val) and return the updated
|
|
// value. Their descriptor is limited to 8 lanes for 8x8 blocks.
|
|
|
|
template <class D, class V>
|
|
V ComputeMask(const D d, const V out_val) {
|
|
const auto kBase = Set(d, -0.74174993f);
|
|
const auto kMul4 = Set(d, 3.2353257320940401f);
|
|
const auto kMul2 = Set(d, 12.906028311180409f);
|
|
const auto kOffset2 = Set(d, 305.04035728311436f);
|
|
const auto kMul3 = Set(d, 5.0220313103171232f);
|
|
const auto kOffset3 = Set(d, 2.1925739705298404f);
|
|
const auto kOffset4 = Mul(Set(d, 0.25f), kOffset3);
|
|
const auto kMul0 = Set(d, 0.74760422233706747f);
|
|
const auto k1 = Set(d, 1.0f);
|
|
|
|
// Avoid division by zero.
|
|
const auto v1 = Max(Mul(out_val, kMul0), Set(d, 1e-3f));
|
|
const auto v2 = Div(k1, Add(v1, kOffset2));
|
|
const auto v3 = Div(k1, MulAdd(v1, v1, kOffset3));
|
|
const auto v4 = Div(k1, MulAdd(v1, v1, kOffset4));
|
|
// TODO(jyrki):
|
|
// A log or two here could make sense. In butteraugli we have effectively
|
|
// log(log(x + C)) for this kind of use, as a single log is used in
|
|
// saturating visual masking and here the modulation values are exponential,
|
|
// another log would counter that.
|
|
return Add(kBase, MulAdd(kMul4, v4, MulAdd(kMul2, v2, Mul(kMul3, v3))));
|
|
}
|
|
|
|
// mul and mul2 represent a scaling difference between jxl and butteraugli.
|
|
const float kSGmul = 226.0480446705883f;
|
|
const float kSGmul2 = 1.0f / 73.377132366608819f;
|
|
const float kLog2 = 0.693147181f;
|
|
// Includes correction factor for std::log -> log2.
|
|
const float kSGRetMul = kSGmul2 * 18.6580932135f * kLog2;
|
|
const float kSGVOffset = 7.14672470003f;
|
|
|
|
template <bool invert, typename D, typename V>
|
|
V RatioOfDerivativesOfCubicRootToSimpleGamma(const D d, V v) {
|
|
// The opsin space in jxl is the cubic root of photons, i.e., v * v * v
|
|
// is related to the number of photons.
|
|
//
|
|
// SimpleGamma(v * v * v) is the psychovisual space in butteraugli.
|
|
// This ratio allows quantization to move from jxl's opsin space to
|
|
// butteraugli's log-gamma space.
|
|
static const float kEpsilon = 1e-2;
|
|
static const float kNumOffset = kEpsilon / kInputScaling / kInputScaling;
|
|
static const float kNumMul = kSGRetMul * 3 * kSGmul;
|
|
static const float kVOffset = (kSGVOffset * kLog2 + kEpsilon) / kInputScaling;
|
|
static const float kDenMul = kLog2 * kSGmul * kInputScaling * kInputScaling;
|
|
|
|
v = ZeroIfNegative(v);
|
|
const auto num_mul = Set(d, kNumMul);
|
|
const auto num_offset = Set(d, kNumOffset);
|
|
const auto den_offset = Set(d, kVOffset);
|
|
const auto den_mul = Set(d, kDenMul);
|
|
|
|
const auto v2 = Mul(v, v);
|
|
|
|
const auto num = MulAdd(num_mul, v2, num_offset);
|
|
const auto den = MulAdd(Mul(den_mul, v), v2, den_offset);
|
|
return invert ? Div(num, den) : Div(den, num);
|
|
}
|
|
|
|
template <bool invert = false>
|
|
float RatioOfDerivativesOfCubicRootToSimpleGamma(float v) {
|
|
using DScalar = HWY_CAPPED(float, 1);
|
|
auto vscalar = Load(DScalar(), &v);
|
|
return GetLane(
|
|
RatioOfDerivativesOfCubicRootToSimpleGamma<invert>(DScalar(), vscalar));
|
|
}
|
|
|
|
// TODO(veluca): this function computes an approximation of the derivative of
|
|
// SimpleGamma with (f(x+eps)-f(x))/eps. Consider two-sided approximation or
|
|
// exact derivatives. For reference, SimpleGamma was:
|
|
/*
|
|
template <typename D, typename V>
|
|
V SimpleGamma(const D d, V v) {
|
|
// A simple HDR compatible gamma function.
|
|
const auto mul = Set(d, kSGmul);
|
|
const auto kRetMul = Set(d, kSGRetMul);
|
|
const auto kRetAdd = Set(d, kSGmul2 * -20.2789020414f);
|
|
const auto kVOffset = Set(d, kSGVOffset);
|
|
|
|
v *= mul;
|
|
|
|
// This should happen rarely, but may lead to a NaN, which is rather
|
|
// undesirable. Since negative photons don't exist we solve the NaNs by
|
|
// clamping here.
|
|
// TODO(veluca): with FastLog2f, this no longer leads to NaNs.
|
|
v = ZeroIfNegative(v);
|
|
return kRetMul * FastLog2f(d, v + kVOffset) + kRetAdd;
|
|
}
|
|
*/
|
|
|
|
template <class D, class V>
|
|
V GammaModulation(const D d, const size_t x, const size_t y,
|
|
const RowBuffer<float>& input, const V out_val) {
|
|
static const float kBias = 0.16f / kInputScaling;
|
|
static const float kScale = kInputScaling / 64.0f;
|
|
auto overall_ratio = Zero(d);
|
|
const auto bias = Set(d, kBias);
|
|
const auto scale = Set(d, kScale);
|
|
const float* const JXL_RESTRICT block_start = input.Row(y) + x;
|
|
for (size_t dy = 0; dy < 8; ++dy) {
|
|
const float* const JXL_RESTRICT row_in = block_start + dy * input.stride();
|
|
for (size_t dx = 0; dx < 8; dx += Lanes(d)) {
|
|
const auto iny = Add(Load(d, row_in + dx), bias);
|
|
const auto ratio_g =
|
|
RatioOfDerivativesOfCubicRootToSimpleGamma</*invert=*/true>(d, iny);
|
|
overall_ratio = Add(overall_ratio, ratio_g);
|
|
}
|
|
}
|
|
overall_ratio = Mul(SumOfLanes(d, overall_ratio), scale);
|
|
// ideally -1.0, but likely optimal correction adds some entropy, so slightly
|
|
// less than that.
|
|
// ln(2) constant folded in because we want std::log but have FastLog2f.
|
|
const auto kGamma = Set(d, -0.15526878023684174f * 0.693147180559945f);
|
|
return MulAdd(kGamma, FastLog2f(d, overall_ratio), out_val);
|
|
}
|
|
|
|
// Change precision in 8x8 blocks that have high frequency content.
|
|
template <class D, class V>
|
|
V HfModulation(const D d, const size_t x, const size_t y,
|
|
const RowBuffer<float>& input, const V out_val) {
|
|
// Zero out the invalid differences for the rightmost value per row.
|
|
const Rebind<uint32_t, D> du;
|
|
HWY_ALIGN constexpr uint32_t kMaskRight[8] = {~0u, ~0u, ~0u, ~0u,
|
|
~0u, ~0u, ~0u, 0};
|
|
|
|
auto sum = Zero(d); // sum of absolute differences with right and below
|
|
static const float kSumCoeff = -2.0052193233688884f * kInputScaling / 112.0;
|
|
auto sumcoeff = Set(d, kSumCoeff);
|
|
|
|
const float* const JXL_RESTRICT block_start = input.Row(y) + x;
|
|
for (size_t dy = 0; dy < 8; ++dy) {
|
|
const float* JXL_RESTRICT row_in = block_start + dy * input.stride();
|
|
const float* JXL_RESTRICT row_in_next =
|
|
dy == 7 ? row_in : row_in + input.stride();
|
|
|
|
for (size_t dx = 0; dx < 8; dx += Lanes(d)) {
|
|
const auto p = Load(d, row_in + dx);
|
|
const auto pr = LoadU(d, row_in + dx + 1);
|
|
const auto mask = BitCast(d, Load(du, kMaskRight + dx));
|
|
sum = Add(sum, And(mask, AbsDiff(p, pr)));
|
|
const auto pd = Load(d, row_in_next + dx);
|
|
sum = Add(sum, AbsDiff(p, pd));
|
|
}
|
|
}
|
|
|
|
sum = SumOfLanes(d, sum);
|
|
return MulAdd(sum, sumcoeff, out_val);
|
|
}
|
|
|
|
void PerBlockModulations(const float y_quant_01, const RowBuffer<float>& input,
|
|
const size_t yb0, const size_t yblen,
|
|
RowBuffer<float>* aq_map) {
|
|
static const float kAcQuant = 0.841f;
|
|
float base_level = 0.48f * kAcQuant;
|
|
float kDampenRampStart = 9.0f;
|
|
float kDampenRampEnd = 65.0f;
|
|
float dampen = 1.0f;
|
|
if (y_quant_01 >= kDampenRampStart) {
|
|
dampen = 1.0f - ((y_quant_01 - kDampenRampStart) /
|
|
(kDampenRampEnd - kDampenRampStart));
|
|
if (dampen < 0) {
|
|
dampen = 0;
|
|
}
|
|
}
|
|
const float mul = kAcQuant * dampen;
|
|
const float add = (1.0f - dampen) * base_level;
|
|
for (size_t iy = 0; iy < yblen; iy++) {
|
|
const size_t yb = yb0 + iy;
|
|
const size_t y = yb * 8;
|
|
float* const JXL_RESTRICT row_out = aq_map->Row(yb);
|
|
const HWY_CAPPED(float, 8) df;
|
|
for (size_t ix = 0; ix < aq_map->xsize(); ix++) {
|
|
size_t x = ix * 8;
|
|
auto out_val = Set(df, row_out[ix]);
|
|
out_val = ComputeMask(df, out_val);
|
|
out_val = HfModulation(df, x, y, input, out_val);
|
|
out_val = GammaModulation(df, x, y, input, out_val);
|
|
// We want multiplicative quantization field, so everything
|
|
// until this point has been modulating the exponent.
|
|
row_out[ix] = FastPow2f(GetLane(out_val) * 1.442695041f) * mul + add;
|
|
}
|
|
}
|
|
}
|
|
|
|
template <typename D, typename V>
|
|
V MaskingSqrt(const D d, V v) {
|
|
static const float kLogOffset = 28;
|
|
static const float kMul = 211.50759899638012f;
|
|
const auto mul_v = Set(d, kMul * 1e8);
|
|
const auto offset_v = Set(d, kLogOffset);
|
|
return Mul(Set(d, 0.25f), Sqrt(MulAdd(v, Sqrt(mul_v), offset_v)));
|
|
}
|
|
|
|
template <typename V>
|
|
void Sort4(V& min0, V& min1, V& min2, V& min3) {
|
|
const auto tmp0 = Min(min0, min1);
|
|
const auto tmp1 = Max(min0, min1);
|
|
const auto tmp2 = Min(min2, min3);
|
|
const auto tmp3 = Max(min2, min3);
|
|
const auto tmp4 = Max(tmp0, tmp2);
|
|
const auto tmp5 = Min(tmp1, tmp3);
|
|
min0 = Min(tmp0, tmp2);
|
|
min1 = Min(tmp4, tmp5);
|
|
min2 = Max(tmp4, tmp5);
|
|
min3 = Max(tmp1, tmp3);
|
|
}
|
|
|
|
template <typename V>
|
|
void UpdateMin4(const V v, V& min0, V& min1, V& min2, V& min3) {
|
|
const auto tmp0 = Max(min0, v);
|
|
const auto tmp1 = Max(min1, tmp0);
|
|
const auto tmp2 = Max(min2, tmp1);
|
|
min0 = Min(min0, v);
|
|
min1 = Min(min1, tmp0);
|
|
min2 = Min(min2, tmp1);
|
|
min3 = Min(min3, tmp2);
|
|
}
|
|
|
|
// Computes a linear combination of the 4 lowest values of the 3x3 neighborhood
|
|
// of each pixel. Output is downsampled 2x.
|
|
void FuzzyErosion(const RowBuffer<float>& pre_erosion, const size_t yb0,
|
|
const size_t yblen, RowBuffer<float>* tmp,
|
|
RowBuffer<float>* aq_map) {
|
|
int xsize_blocks = aq_map->xsize();
|
|
int xsize = pre_erosion.xsize();
|
|
HWY_FULL(float) d;
|
|
const auto mul0 = Set(d, 0.125f);
|
|
const auto mul1 = Set(d, 0.075f);
|
|
const auto mul2 = Set(d, 0.06f);
|
|
const auto mul3 = Set(d, 0.05f);
|
|
for (size_t iy = 0; iy < 2 * yblen; ++iy) {
|
|
size_t y = 2 * yb0 + iy;
|
|
const float* JXL_RESTRICT rowt = pre_erosion.Row(y - 1);
|
|
const float* JXL_RESTRICT rowm = pre_erosion.Row(y);
|
|
const float* JXL_RESTRICT rowb = pre_erosion.Row(y + 1);
|
|
float* row_out = tmp->Row(y);
|
|
for (int x = 0; x < xsize; x += Lanes(d)) {
|
|
int xm1 = x - 1;
|
|
int xp1 = x + 1;
|
|
auto min0 = LoadU(d, rowm + x);
|
|
auto min1 = LoadU(d, rowm + xm1);
|
|
auto min2 = LoadU(d, rowm + xp1);
|
|
auto min3 = LoadU(d, rowt + xm1);
|
|
Sort4(min0, min1, min2, min3);
|
|
UpdateMin4(LoadU(d, rowt + x), min0, min1, min2, min3);
|
|
UpdateMin4(LoadU(d, rowt + xp1), min0, min1, min2, min3);
|
|
UpdateMin4(LoadU(d, rowb + xm1), min0, min1, min2, min3);
|
|
UpdateMin4(LoadU(d, rowb + x), min0, min1, min2, min3);
|
|
UpdateMin4(LoadU(d, rowb + xp1), min0, min1, min2, min3);
|
|
const auto v = Add(Add(Mul(mul0, min0), Mul(mul1, min1)),
|
|
Add(Mul(mul2, min2), Mul(mul3, min3)));
|
|
Store(v, d, row_out + x);
|
|
}
|
|
if (iy % 2 == 1) {
|
|
const float* JXL_RESTRICT row_out0 = tmp->Row(y - 1);
|
|
float* JXL_RESTRICT aq_out = aq_map->Row(yb0 + iy / 2);
|
|
for (int bx = 0, x = 0; bx < xsize_blocks; ++bx, x += 2) {
|
|
aq_out[bx] =
|
|
(row_out[x] + row_out[x + 1] + row_out0[x] + row_out0[x + 1]);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void ComputePreErosion(const RowBuffer<float>& input, const size_t xsize,
|
|
const size_t y0, const size_t ylen, int border,
|
|
float* diff_buffer, RowBuffer<float>* pre_erosion) {
|
|
const size_t xsize_out = xsize / 4;
|
|
const size_t y0_out = y0 / 4;
|
|
|
|
// The XYB gamma is 3.0 to be able to decode faster with two muls.
|
|
// Butteraugli's gamma is matching the gamma of human eye, around 2.6.
|
|
// We approximate the gamma difference by adding one cubic root into
|
|
// the adaptive quantization. This gives us a total gamma of 2.6666
|
|
// for quantization uses.
|
|
static const float match_gamma_offset = 0.019 / kInputScaling;
|
|
|
|
const HWY_CAPPED(float, 8) df;
|
|
|
|
static const float limit = 0.2f;
|
|
// Computes image (padded to multiple of 8x8) of local pixel differences.
|
|
// Subsample both directions by 4.
|
|
for (size_t iy = 0; iy < ylen; ++iy) {
|
|
size_t y = y0 + iy;
|
|
const float* row_in = input.Row(y);
|
|
const float* row_in1 = input.Row(y + 1);
|
|
const float* row_in2 = input.Row(y - 1);
|
|
float* JXL_RESTRICT row_out = diff_buffer;
|
|
const auto match_gamma_offset_v = Set(df, match_gamma_offset);
|
|
const auto quarter = Set(df, 0.25f);
|
|
for (size_t x = 0; x < xsize; x += Lanes(df)) {
|
|
const auto in = LoadU(df, row_in + x);
|
|
const auto in_r = LoadU(df, row_in + x + 1);
|
|
const auto in_l = LoadU(df, row_in + x - 1);
|
|
const auto in_t = LoadU(df, row_in2 + x);
|
|
const auto in_b = LoadU(df, row_in1 + x);
|
|
const auto base = Mul(quarter, Add(Add(in_r, in_l), Add(in_t, in_b)));
|
|
const auto gammacv =
|
|
RatioOfDerivativesOfCubicRootToSimpleGamma</*invert=*/false>(
|
|
df, Add(in, match_gamma_offset_v));
|
|
auto diff = Mul(gammacv, Sub(in, base));
|
|
diff = Mul(diff, diff);
|
|
diff = Min(diff, Set(df, limit));
|
|
diff = MaskingSqrt(df, diff);
|
|
if ((iy & 3) != 0) {
|
|
diff = Add(diff, LoadU(df, row_out + x));
|
|
}
|
|
StoreU(diff, df, row_out + x);
|
|
}
|
|
if (iy % 4 == 3) {
|
|
size_t y_out = y0_out + iy / 4;
|
|
float* row_d_out = pre_erosion->Row(y_out);
|
|
for (size_t x = 0; x < xsize_out; x++) {
|
|
row_d_out[x] = (row_out[x * 4] + row_out[x * 4 + 1] +
|
|
row_out[x * 4 + 2] + row_out[x * 4 + 3]) *
|
|
0.25f;
|
|
}
|
|
pre_erosion->PadRow(y_out, xsize_out, border);
|
|
}
|
|
}
|
|
}
|
|
|
|
} // namespace
|
|
|
|
// NOLINTNEXTLINE(google-readability-namespace-comments)
|
|
} // namespace HWY_NAMESPACE
|
|
} // namespace jpegli
|
|
HWY_AFTER_NAMESPACE();
|
|
|
|
#if HWY_ONCE
|
|
namespace jpegli {
|
|
HWY_EXPORT(ComputePreErosion);
|
|
HWY_EXPORT(FuzzyErosion);
|
|
HWY_EXPORT(PerBlockModulations);
|
|
|
|
namespace {
|
|
|
|
constexpr int kPreErosionBorder = 1;
|
|
|
|
} // namespace
|
|
|
|
void ComputeAdaptiveQuantField(j_compress_ptr cinfo) {
|
|
jpeg_comp_master* m = cinfo->master;
|
|
if (!m->use_adaptive_quantization) {
|
|
return;
|
|
}
|
|
int y_channel = cinfo->jpeg_color_space == JCS_RGB ? 1 : 0;
|
|
jpeg_component_info* y_comp = &cinfo->comp_info[y_channel];
|
|
int y_quant_01 = cinfo->quant_tbl_ptrs[y_comp->quant_tbl_no]->quantval[1];
|
|
if (m->next_iMCU_row == 0) {
|
|
m->input_buffer[y_channel].CopyRow(-1, 0, 1);
|
|
}
|
|
if (m->next_iMCU_row + 1 == cinfo->total_iMCU_rows) {
|
|
size_t last_row = m->ysize_blocks * DCTSIZE - 1;
|
|
m->input_buffer[y_channel].CopyRow(last_row + 1, last_row, 1);
|
|
}
|
|
const RowBuffer<float>& input = m->input_buffer[y_channel];
|
|
const size_t xsize_blocks = y_comp->width_in_blocks;
|
|
const size_t xsize = xsize_blocks * DCTSIZE;
|
|
const size_t yb0 = m->next_iMCU_row * cinfo->max_v_samp_factor;
|
|
const size_t yblen = cinfo->max_v_samp_factor;
|
|
size_t y0 = yb0 * DCTSIZE;
|
|
size_t ylen = cinfo->max_v_samp_factor * DCTSIZE;
|
|
if (y0 == 0) {
|
|
ylen += 4;
|
|
} else {
|
|
y0 += 4;
|
|
}
|
|
if (m->next_iMCU_row + 1 == cinfo->total_iMCU_rows) {
|
|
ylen -= 4;
|
|
}
|
|
HWY_DYNAMIC_DISPATCH(ComputePreErosion)
|
|
(input, xsize, y0, ylen, kPreErosionBorder, m->diff_buffer, &m->pre_erosion);
|
|
if (y0 == 0) {
|
|
m->pre_erosion.CopyRow(-1, 0, kPreErosionBorder);
|
|
}
|
|
if (m->next_iMCU_row + 1 == cinfo->total_iMCU_rows) {
|
|
size_t last_row = m->ysize_blocks * 2 - 1;
|
|
m->pre_erosion.CopyRow(last_row + 1, last_row, kPreErosionBorder);
|
|
}
|
|
HWY_DYNAMIC_DISPATCH(FuzzyErosion)
|
|
(m->pre_erosion, yb0, yblen, &m->fuzzy_erosion_tmp, &m->quant_field);
|
|
HWY_DYNAMIC_DISPATCH(PerBlockModulations)
|
|
(y_quant_01, input, yb0, yblen, &m->quant_field);
|
|
for (int y = 0; y < cinfo->max_v_samp_factor; ++y) {
|
|
float* row = m->quant_field.Row(yb0 + y);
|
|
for (size_t x = 0; x < xsize_blocks; ++x) {
|
|
row[x] = std::max(0.0f, (0.6f / row[x]) - 1.0f);
|
|
}
|
|
}
|
|
}
|
|
|
|
} // namespace jpegli
|
|
#endif // HWY_ONCE
|