1047 lines
45 KiB
C
1047 lines
45 KiB
C
/*
|
|
* Copyright (c) 2016, Alliance for Open Media. All rights reserved.
|
|
*
|
|
* This source code is subject to the terms of the BSD 2 Clause License and
|
|
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
|
|
* was not distributed with this source code in the LICENSE file, you can
|
|
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
|
|
* Media Patent License 1.0 was not distributed with this source code in the
|
|
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
|
|
*/
|
|
|
|
#include <math.h>
|
|
|
|
#include "config/aom_dsp_rtcd.h"
|
|
|
|
#include "aom/aomcx.h"
|
|
#include "aom_dsp/quantize.h"
|
|
#include "aom_mem/aom_mem.h"
|
|
#include "aom_ports/bitops.h"
|
|
#include "aom_ports/mem.h"
|
|
|
|
#include "av1/common/idct.h"
|
|
#include "av1/common/quant_common.h"
|
|
#include "av1/common/scan.h"
|
|
#include "av1/common/seg_common.h"
|
|
|
|
#include "av1/encoder/av1_quantize.h"
|
|
#include "av1/encoder/encoder.h"
|
|
#include "av1/encoder/rd.h"
|
|
|
|
void av1_quantize_skip(intptr_t n_coeffs, tran_low_t *qcoeff_ptr,
|
|
tran_low_t *dqcoeff_ptr, uint16_t *eob_ptr) {
|
|
memset(qcoeff_ptr, 0, n_coeffs * sizeof(*qcoeff_ptr));
|
|
memset(dqcoeff_ptr, 0, n_coeffs * sizeof(*dqcoeff_ptr));
|
|
*eob_ptr = 0;
|
|
}
|
|
|
|
int av1_quantize_fp_no_qmatrix(const int16_t quant_ptr[2],
|
|
const int16_t dequant_ptr[2],
|
|
const int16_t round_ptr[2], int log_scale,
|
|
const int16_t *scan, int coeff_count,
|
|
const tran_low_t *coeff_ptr,
|
|
tran_low_t *qcoeff_ptr,
|
|
tran_low_t *dqcoeff_ptr) {
|
|
memset(qcoeff_ptr, 0, coeff_count * sizeof(*qcoeff_ptr));
|
|
memset(dqcoeff_ptr, 0, coeff_count * sizeof(*dqcoeff_ptr));
|
|
const int rounding[2] = { ROUND_POWER_OF_TWO(round_ptr[0], log_scale),
|
|
ROUND_POWER_OF_TWO(round_ptr[1], log_scale) };
|
|
int eob = 0;
|
|
for (int i = 0; i < coeff_count; i++) {
|
|
const int rc = scan[i];
|
|
const int32_t thresh = (int32_t)(dequant_ptr[rc != 0]);
|
|
const int coeff = coeff_ptr[rc];
|
|
const int coeff_sign = AOMSIGN(coeff);
|
|
int64_t abs_coeff = (coeff ^ coeff_sign) - coeff_sign;
|
|
int tmp32 = 0;
|
|
if ((abs_coeff << (1 + log_scale)) >= thresh) {
|
|
abs_coeff = clamp64(abs_coeff + rounding[rc != 0], INT16_MIN, INT16_MAX);
|
|
tmp32 = (int)((abs_coeff * quant_ptr[rc != 0]) >> (16 - log_scale));
|
|
if (tmp32) {
|
|
qcoeff_ptr[rc] = (tmp32 ^ coeff_sign) - coeff_sign;
|
|
const tran_low_t abs_dqcoeff =
|
|
(tmp32 * dequant_ptr[rc != 0]) >> log_scale;
|
|
dqcoeff_ptr[rc] = (abs_dqcoeff ^ coeff_sign) - coeff_sign;
|
|
}
|
|
}
|
|
if (tmp32) eob = i + 1;
|
|
}
|
|
return eob;
|
|
}
|
|
|
|
static void quantize_fp_helper_c(
|
|
const tran_low_t *coeff_ptr, intptr_t n_coeffs, const int16_t *zbin_ptr,
|
|
const int16_t *round_ptr, const int16_t *quant_ptr,
|
|
const int16_t *quant_shift_ptr, tran_low_t *qcoeff_ptr,
|
|
tran_low_t *dqcoeff_ptr, const int16_t *dequant_ptr, uint16_t *eob_ptr,
|
|
const int16_t *scan, const int16_t *iscan, const qm_val_t *qm_ptr,
|
|
const qm_val_t *iqm_ptr, int log_scale) {
|
|
int i, eob = -1;
|
|
const int rounding[2] = { ROUND_POWER_OF_TWO(round_ptr[0], log_scale),
|
|
ROUND_POWER_OF_TWO(round_ptr[1], log_scale) };
|
|
// TODO(jingning) Decide the need of these arguments after the
|
|
// quantization process is completed.
|
|
(void)zbin_ptr;
|
|
(void)quant_shift_ptr;
|
|
(void)iscan;
|
|
|
|
memset(qcoeff_ptr, 0, n_coeffs * sizeof(*qcoeff_ptr));
|
|
memset(dqcoeff_ptr, 0, n_coeffs * sizeof(*dqcoeff_ptr));
|
|
|
|
if (qm_ptr == NULL && iqm_ptr == NULL) {
|
|
*eob_ptr = av1_quantize_fp_no_qmatrix(quant_ptr, dequant_ptr, round_ptr,
|
|
log_scale, scan, (int)n_coeffs,
|
|
coeff_ptr, qcoeff_ptr, dqcoeff_ptr);
|
|
} else {
|
|
// Quantization pass: All coefficients with index >= zero_flag are
|
|
// skippable. Note: zero_flag can be zero.
|
|
for (i = 0; i < n_coeffs; i++) {
|
|
const int rc = scan[i];
|
|
const int coeff = coeff_ptr[rc];
|
|
const qm_val_t wt = qm_ptr ? qm_ptr[rc] : (1 << AOM_QM_BITS);
|
|
const qm_val_t iwt = iqm_ptr ? iqm_ptr[rc] : (1 << AOM_QM_BITS);
|
|
const int dequant =
|
|
(dequant_ptr[rc != 0] * iwt + (1 << (AOM_QM_BITS - 1))) >>
|
|
AOM_QM_BITS;
|
|
const int coeff_sign = AOMSIGN(coeff);
|
|
int64_t abs_coeff = (coeff ^ coeff_sign) - coeff_sign;
|
|
int tmp32 = 0;
|
|
if (abs_coeff * wt >=
|
|
(dequant_ptr[rc != 0] << (AOM_QM_BITS - (1 + log_scale)))) {
|
|
abs_coeff += rounding[rc != 0];
|
|
abs_coeff = clamp64(abs_coeff, INT16_MIN, INT16_MAX);
|
|
tmp32 = (int)((abs_coeff * wt * quant_ptr[rc != 0]) >>
|
|
(16 - log_scale + AOM_QM_BITS));
|
|
qcoeff_ptr[rc] = (tmp32 ^ coeff_sign) - coeff_sign;
|
|
const tran_low_t abs_dqcoeff = (tmp32 * dequant) >> log_scale;
|
|
dqcoeff_ptr[rc] = (abs_dqcoeff ^ coeff_sign) - coeff_sign;
|
|
}
|
|
|
|
if (tmp32) eob = i;
|
|
}
|
|
*eob_ptr = eob + 1;
|
|
}
|
|
}
|
|
|
|
#if CONFIG_AV1_HIGHBITDEPTH
|
|
static void highbd_quantize_fp_helper_c(
|
|
const tran_low_t *coeff_ptr, intptr_t count, const int16_t *zbin_ptr,
|
|
const int16_t *round_ptr, const int16_t *quant_ptr,
|
|
const int16_t *quant_shift_ptr, tran_low_t *qcoeff_ptr,
|
|
tran_low_t *dqcoeff_ptr, const int16_t *dequant_ptr, uint16_t *eob_ptr,
|
|
const int16_t *scan, const int16_t *iscan, const qm_val_t *qm_ptr,
|
|
const qm_val_t *iqm_ptr, int log_scale) {
|
|
int i;
|
|
int eob = -1;
|
|
const int shift = 16 - log_scale;
|
|
// TODO(jingning) Decide the need of these arguments after the
|
|
// quantization process is completed.
|
|
(void)zbin_ptr;
|
|
(void)quant_shift_ptr;
|
|
(void)iscan;
|
|
|
|
if (qm_ptr || iqm_ptr) {
|
|
// Quantization pass: All coefficients with index >= zero_flag are
|
|
// skippable. Note: zero_flag can be zero.
|
|
for (i = 0; i < count; i++) {
|
|
const int rc = scan[i];
|
|
const int coeff = coeff_ptr[rc];
|
|
const qm_val_t wt = qm_ptr != NULL ? qm_ptr[rc] : (1 << AOM_QM_BITS);
|
|
const qm_val_t iwt = iqm_ptr != NULL ? iqm_ptr[rc] : (1 << AOM_QM_BITS);
|
|
const int dequant =
|
|
(dequant_ptr[rc != 0] * iwt + (1 << (AOM_QM_BITS - 1))) >>
|
|
AOM_QM_BITS;
|
|
const int coeff_sign = AOMSIGN(coeff);
|
|
const int64_t abs_coeff = (coeff ^ coeff_sign) - coeff_sign;
|
|
int abs_qcoeff = 0;
|
|
if (abs_coeff * wt >=
|
|
(dequant_ptr[rc != 0] << (AOM_QM_BITS - (1 + log_scale)))) {
|
|
const int64_t tmp =
|
|
abs_coeff + ROUND_POWER_OF_TWO(round_ptr[rc != 0], log_scale);
|
|
abs_qcoeff =
|
|
(int)((tmp * quant_ptr[rc != 0] * wt) >> (shift + AOM_QM_BITS));
|
|
qcoeff_ptr[rc] = (tran_low_t)((abs_qcoeff ^ coeff_sign) - coeff_sign);
|
|
const tran_low_t abs_dqcoeff = (abs_qcoeff * dequant) >> log_scale;
|
|
dqcoeff_ptr[rc] = (tran_low_t)((abs_dqcoeff ^ coeff_sign) - coeff_sign);
|
|
if (abs_qcoeff) eob = i;
|
|
} else {
|
|
qcoeff_ptr[rc] = 0;
|
|
dqcoeff_ptr[rc] = 0;
|
|
}
|
|
}
|
|
} else {
|
|
const int log_scaled_round_arr[2] = {
|
|
ROUND_POWER_OF_TWO(round_ptr[0], log_scale),
|
|
ROUND_POWER_OF_TWO(round_ptr[1], log_scale),
|
|
};
|
|
for (i = 0; i < count; i++) {
|
|
const int rc = scan[i];
|
|
const int coeff = coeff_ptr[rc];
|
|
const int rc01 = (rc != 0);
|
|
const int coeff_sign = AOMSIGN(coeff);
|
|
const int abs_coeff = (coeff ^ coeff_sign) - coeff_sign;
|
|
const int log_scaled_round = log_scaled_round_arr[rc01];
|
|
if ((abs_coeff << (1 + log_scale)) >= dequant_ptr[rc01]) {
|
|
const int quant = quant_ptr[rc01];
|
|
const int dequant = dequant_ptr[rc01];
|
|
const int64_t tmp = (int64_t)abs_coeff + log_scaled_round;
|
|
const int abs_qcoeff = (int)((tmp * quant) >> shift);
|
|
qcoeff_ptr[rc] = (tran_low_t)((abs_qcoeff ^ coeff_sign) - coeff_sign);
|
|
const tran_low_t abs_dqcoeff = (abs_qcoeff * dequant) >> log_scale;
|
|
if (abs_qcoeff) eob = i;
|
|
dqcoeff_ptr[rc] = (tran_low_t)((abs_dqcoeff ^ coeff_sign) - coeff_sign);
|
|
} else {
|
|
qcoeff_ptr[rc] = 0;
|
|
dqcoeff_ptr[rc] = 0;
|
|
}
|
|
}
|
|
}
|
|
*eob_ptr = eob + 1;
|
|
}
|
|
#endif // CONFIG_AV1_HIGHBITDEPTH
|
|
|
|
void av1_quantize_fp_c(const tran_low_t *coeff_ptr, intptr_t n_coeffs,
|
|
const int16_t *zbin_ptr, const int16_t *round_ptr,
|
|
const int16_t *quant_ptr, const int16_t *quant_shift_ptr,
|
|
tran_low_t *qcoeff_ptr, tran_low_t *dqcoeff_ptr,
|
|
const int16_t *dequant_ptr, uint16_t *eob_ptr,
|
|
const int16_t *scan, const int16_t *iscan) {
|
|
quantize_fp_helper_c(coeff_ptr, n_coeffs, zbin_ptr, round_ptr, quant_ptr,
|
|
quant_shift_ptr, qcoeff_ptr, dqcoeff_ptr, dequant_ptr,
|
|
eob_ptr, scan, iscan, NULL, NULL, 0);
|
|
}
|
|
|
|
void av1_quantize_lp_c(const int16_t *coeff_ptr, intptr_t n_coeffs,
|
|
const int16_t *round_ptr, const int16_t *quant_ptr,
|
|
int16_t *qcoeff_ptr, int16_t *dqcoeff_ptr,
|
|
const int16_t *dequant_ptr, uint16_t *eob_ptr,
|
|
const int16_t *scan, const int16_t *iscan) {
|
|
(void)iscan;
|
|
int eob = -1;
|
|
|
|
memset(qcoeff_ptr, 0, n_coeffs * sizeof(*qcoeff_ptr));
|
|
memset(dqcoeff_ptr, 0, n_coeffs * sizeof(*dqcoeff_ptr));
|
|
|
|
// Quantization pass: All coefficients with index >= zero_flag are
|
|
// skippable. Note: zero_flag can be zero.
|
|
for (int i = 0; i < n_coeffs; i++) {
|
|
const int rc = scan[i];
|
|
const int coeff = coeff_ptr[rc];
|
|
const int coeff_sign = AOMSIGN(coeff);
|
|
const int abs_coeff = (coeff ^ coeff_sign) - coeff_sign;
|
|
|
|
int tmp = clamp(abs_coeff + round_ptr[rc != 0], INT16_MIN, INT16_MAX);
|
|
tmp = (tmp * quant_ptr[rc != 0]) >> 16;
|
|
|
|
qcoeff_ptr[rc] = (tmp ^ coeff_sign) - coeff_sign;
|
|
dqcoeff_ptr[rc] = qcoeff_ptr[rc] * dequant_ptr[rc != 0];
|
|
|
|
if (tmp) eob = i;
|
|
}
|
|
*eob_ptr = eob + 1;
|
|
}
|
|
|
|
void av1_quantize_fp_32x32_c(const tran_low_t *coeff_ptr, intptr_t n_coeffs,
|
|
const int16_t *zbin_ptr, const int16_t *round_ptr,
|
|
const int16_t *quant_ptr,
|
|
const int16_t *quant_shift_ptr,
|
|
tran_low_t *qcoeff_ptr, tran_low_t *dqcoeff_ptr,
|
|
const int16_t *dequant_ptr, uint16_t *eob_ptr,
|
|
const int16_t *scan, const int16_t *iscan) {
|
|
quantize_fp_helper_c(coeff_ptr, n_coeffs, zbin_ptr, round_ptr, quant_ptr,
|
|
quant_shift_ptr, qcoeff_ptr, dqcoeff_ptr, dequant_ptr,
|
|
eob_ptr, scan, iscan, NULL, NULL, 1);
|
|
}
|
|
|
|
void av1_quantize_fp_64x64_c(const tran_low_t *coeff_ptr, intptr_t n_coeffs,
|
|
const int16_t *zbin_ptr, const int16_t *round_ptr,
|
|
const int16_t *quant_ptr,
|
|
const int16_t *quant_shift_ptr,
|
|
tran_low_t *qcoeff_ptr, tran_low_t *dqcoeff_ptr,
|
|
const int16_t *dequant_ptr, uint16_t *eob_ptr,
|
|
const int16_t *scan, const int16_t *iscan) {
|
|
quantize_fp_helper_c(coeff_ptr, n_coeffs, zbin_ptr, round_ptr, quant_ptr,
|
|
quant_shift_ptr, qcoeff_ptr, dqcoeff_ptr, dequant_ptr,
|
|
eob_ptr, scan, iscan, NULL, NULL, 2);
|
|
}
|
|
|
|
void av1_quantize_fp_facade(const tran_low_t *coeff_ptr, intptr_t n_coeffs,
|
|
const MACROBLOCK_PLANE *p, tran_low_t *qcoeff_ptr,
|
|
tran_low_t *dqcoeff_ptr, uint16_t *eob_ptr,
|
|
const SCAN_ORDER *sc, const QUANT_PARAM *qparam) {
|
|
const qm_val_t *qm_ptr = qparam->qmatrix;
|
|
const qm_val_t *iqm_ptr = qparam->iqmatrix;
|
|
if (qm_ptr != NULL && iqm_ptr != NULL) {
|
|
quantize_fp_helper_c(coeff_ptr, n_coeffs, p->zbin_QTX, p->round_fp_QTX,
|
|
p->quant_fp_QTX, p->quant_shift_QTX, qcoeff_ptr,
|
|
dqcoeff_ptr, p->dequant_QTX, eob_ptr, sc->scan,
|
|
sc->iscan, qm_ptr, iqm_ptr, qparam->log_scale);
|
|
} else {
|
|
switch (qparam->log_scale) {
|
|
case 0:
|
|
av1_quantize_fp(coeff_ptr, n_coeffs, p->zbin_QTX, p->round_fp_QTX,
|
|
p->quant_fp_QTX, p->quant_shift_QTX, qcoeff_ptr,
|
|
dqcoeff_ptr, p->dequant_QTX, eob_ptr, sc->scan,
|
|
sc->iscan);
|
|
break;
|
|
case 1:
|
|
av1_quantize_fp_32x32(coeff_ptr, n_coeffs, p->zbin_QTX, p->round_fp_QTX,
|
|
p->quant_fp_QTX, p->quant_shift_QTX, qcoeff_ptr,
|
|
dqcoeff_ptr, p->dequant_QTX, eob_ptr, sc->scan,
|
|
sc->iscan);
|
|
break;
|
|
case 2:
|
|
av1_quantize_fp_64x64(coeff_ptr, n_coeffs, p->zbin_QTX, p->round_fp_QTX,
|
|
p->quant_fp_QTX, p->quant_shift_QTX, qcoeff_ptr,
|
|
dqcoeff_ptr, p->dequant_QTX, eob_ptr, sc->scan,
|
|
sc->iscan);
|
|
break;
|
|
default: assert(0);
|
|
}
|
|
}
|
|
}
|
|
|
|
void av1_quantize_b_facade(const tran_low_t *coeff_ptr, intptr_t n_coeffs,
|
|
const MACROBLOCK_PLANE *p, tran_low_t *qcoeff_ptr,
|
|
tran_low_t *dqcoeff_ptr, uint16_t *eob_ptr,
|
|
const SCAN_ORDER *sc, const QUANT_PARAM *qparam) {
|
|
const qm_val_t *qm_ptr = qparam->qmatrix;
|
|
const qm_val_t *iqm_ptr = qparam->iqmatrix;
|
|
#if !CONFIG_REALTIME_ONLY
|
|
if (qparam->use_quant_b_adapt) {
|
|
// TODO(sarahparker) These quantize_b optimizations need SIMD
|
|
// implementations
|
|
if (qm_ptr != NULL && iqm_ptr != NULL) {
|
|
aom_quantize_b_adaptive_helper_c(
|
|
coeff_ptr, n_coeffs, p->zbin_QTX, p->round_QTX, p->quant_QTX,
|
|
p->quant_shift_QTX, qcoeff_ptr, dqcoeff_ptr, p->dequant_QTX, eob_ptr,
|
|
sc->scan, sc->iscan, qm_ptr, iqm_ptr, qparam->log_scale);
|
|
} else {
|
|
switch (qparam->log_scale) {
|
|
case 0:
|
|
aom_quantize_b_adaptive(coeff_ptr, n_coeffs, p->zbin_QTX,
|
|
p->round_QTX, p->quant_QTX,
|
|
p->quant_shift_QTX, qcoeff_ptr, dqcoeff_ptr,
|
|
p->dequant_QTX, eob_ptr, sc->scan, sc->iscan);
|
|
break;
|
|
case 1:
|
|
aom_quantize_b_32x32_adaptive(
|
|
coeff_ptr, n_coeffs, p->zbin_QTX, p->round_QTX, p->quant_QTX,
|
|
p->quant_shift_QTX, qcoeff_ptr, dqcoeff_ptr, p->dequant_QTX,
|
|
eob_ptr, sc->scan, sc->iscan);
|
|
break;
|
|
case 2:
|
|
aom_quantize_b_64x64_adaptive(
|
|
coeff_ptr, n_coeffs, p->zbin_QTX, p->round_QTX, p->quant_QTX,
|
|
p->quant_shift_QTX, qcoeff_ptr, dqcoeff_ptr, p->dequant_QTX,
|
|
eob_ptr, sc->scan, sc->iscan);
|
|
break;
|
|
default: assert(0);
|
|
}
|
|
}
|
|
return;
|
|
}
|
|
#endif // !CONFIG_REALTIME_ONLY
|
|
|
|
if (qm_ptr != NULL && iqm_ptr != NULL) {
|
|
aom_quantize_b_helper_c(coeff_ptr, n_coeffs, p->zbin_QTX, p->round_QTX,
|
|
p->quant_QTX, p->quant_shift_QTX, qcoeff_ptr,
|
|
dqcoeff_ptr, p->dequant_QTX, eob_ptr, sc->scan,
|
|
sc->iscan, qm_ptr, iqm_ptr, qparam->log_scale);
|
|
} else {
|
|
switch (qparam->log_scale) {
|
|
case 0:
|
|
aom_quantize_b(coeff_ptr, n_coeffs, p->zbin_QTX, p->round_QTX,
|
|
p->quant_QTX, p->quant_shift_QTX, qcoeff_ptr,
|
|
dqcoeff_ptr, p->dequant_QTX, eob_ptr, sc->scan,
|
|
sc->iscan);
|
|
break;
|
|
case 1:
|
|
aom_quantize_b_32x32(coeff_ptr, n_coeffs, p->zbin_QTX, p->round_QTX,
|
|
p->quant_QTX, p->quant_shift_QTX, qcoeff_ptr,
|
|
dqcoeff_ptr, p->dequant_QTX, eob_ptr, sc->scan,
|
|
sc->iscan);
|
|
break;
|
|
case 2:
|
|
aom_quantize_b_64x64(coeff_ptr, n_coeffs, p->zbin_QTX, p->round_QTX,
|
|
p->quant_QTX, p->quant_shift_QTX, qcoeff_ptr,
|
|
dqcoeff_ptr, p->dequant_QTX, eob_ptr, sc->scan,
|
|
sc->iscan);
|
|
break;
|
|
default: assert(0);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void quantize_dc(const tran_low_t *coeff_ptr, int n_coeffs,
|
|
int skip_block, const int16_t *round_ptr,
|
|
const int16_t quant, tran_low_t *qcoeff_ptr,
|
|
tran_low_t *dqcoeff_ptr, const int16_t dequant_ptr,
|
|
uint16_t *eob_ptr, const qm_val_t *qm_ptr,
|
|
const qm_val_t *iqm_ptr, const int log_scale) {
|
|
const int rc = 0;
|
|
const int coeff = coeff_ptr[rc];
|
|
const int coeff_sign = AOMSIGN(coeff);
|
|
const int abs_coeff = (coeff ^ coeff_sign) - coeff_sign;
|
|
int64_t tmp;
|
|
int eob = -1;
|
|
int32_t tmp32;
|
|
int dequant;
|
|
|
|
memset(qcoeff_ptr, 0, n_coeffs * sizeof(*qcoeff_ptr));
|
|
memset(dqcoeff_ptr, 0, n_coeffs * sizeof(*dqcoeff_ptr));
|
|
|
|
if (!skip_block) {
|
|
const int wt = qm_ptr != NULL ? qm_ptr[rc] : (1 << AOM_QM_BITS);
|
|
const int iwt = iqm_ptr != NULL ? iqm_ptr[rc] : (1 << AOM_QM_BITS);
|
|
tmp = clamp(abs_coeff + ROUND_POWER_OF_TWO(round_ptr[rc != 0], log_scale),
|
|
INT16_MIN, INT16_MAX);
|
|
tmp32 = (int32_t)((tmp * wt * quant) >> (16 - log_scale + AOM_QM_BITS));
|
|
qcoeff_ptr[rc] = (tmp32 ^ coeff_sign) - coeff_sign;
|
|
dequant = (dequant_ptr * iwt + (1 << (AOM_QM_BITS - 1))) >> AOM_QM_BITS;
|
|
const tran_low_t abs_dqcoeff = (tmp32 * dequant) >> log_scale;
|
|
dqcoeff_ptr[rc] = (tran_low_t)((abs_dqcoeff ^ coeff_sign) - coeff_sign);
|
|
if (tmp32) eob = 0;
|
|
}
|
|
*eob_ptr = eob + 1;
|
|
}
|
|
|
|
void av1_quantize_dc_facade(const tran_low_t *coeff_ptr, intptr_t n_coeffs,
|
|
const MACROBLOCK_PLANE *p, tran_low_t *qcoeff_ptr,
|
|
tran_low_t *dqcoeff_ptr, uint16_t *eob_ptr,
|
|
const SCAN_ORDER *sc, const QUANT_PARAM *qparam) {
|
|
// obsolete skip_block
|
|
const int skip_block = 0;
|
|
(void)sc;
|
|
assert(qparam->log_scale >= 0 && qparam->log_scale < (3));
|
|
const qm_val_t *qm_ptr = qparam->qmatrix;
|
|
const qm_val_t *iqm_ptr = qparam->iqmatrix;
|
|
quantize_dc(coeff_ptr, (int)n_coeffs, skip_block, p->round_QTX,
|
|
p->quant_fp_QTX[0], qcoeff_ptr, dqcoeff_ptr, p->dequant_QTX[0],
|
|
eob_ptr, qm_ptr, iqm_ptr, qparam->log_scale);
|
|
}
|
|
|
|
#if CONFIG_AV1_HIGHBITDEPTH
|
|
void av1_highbd_quantize_fp_facade(const tran_low_t *coeff_ptr,
|
|
intptr_t n_coeffs, const MACROBLOCK_PLANE *p,
|
|
tran_low_t *qcoeff_ptr,
|
|
tran_low_t *dqcoeff_ptr, uint16_t *eob_ptr,
|
|
const SCAN_ORDER *sc,
|
|
const QUANT_PARAM *qparam) {
|
|
const qm_val_t *qm_ptr = qparam->qmatrix;
|
|
const qm_val_t *iqm_ptr = qparam->iqmatrix;
|
|
if (qm_ptr != NULL && iqm_ptr != NULL) {
|
|
highbd_quantize_fp_helper_c(
|
|
coeff_ptr, n_coeffs, p->zbin_QTX, p->round_fp_QTX, p->quant_fp_QTX,
|
|
p->quant_shift_QTX, qcoeff_ptr, dqcoeff_ptr, p->dequant_QTX, eob_ptr,
|
|
sc->scan, sc->iscan, qm_ptr, iqm_ptr, qparam->log_scale);
|
|
} else {
|
|
av1_highbd_quantize_fp(coeff_ptr, n_coeffs, p->zbin_QTX, p->round_fp_QTX,
|
|
p->quant_fp_QTX, p->quant_shift_QTX, qcoeff_ptr,
|
|
dqcoeff_ptr, p->dequant_QTX, eob_ptr, sc->scan,
|
|
sc->iscan, qparam->log_scale);
|
|
}
|
|
}
|
|
|
|
void av1_highbd_quantize_b_facade(const tran_low_t *coeff_ptr,
|
|
intptr_t n_coeffs, const MACROBLOCK_PLANE *p,
|
|
tran_low_t *qcoeff_ptr,
|
|
tran_low_t *dqcoeff_ptr, uint16_t *eob_ptr,
|
|
const SCAN_ORDER *sc,
|
|
const QUANT_PARAM *qparam) {
|
|
const qm_val_t *qm_ptr = qparam->qmatrix;
|
|
const qm_val_t *iqm_ptr = qparam->iqmatrix;
|
|
#if !CONFIG_REALTIME_ONLY
|
|
if (qparam->use_quant_b_adapt) {
|
|
if (qm_ptr != NULL && iqm_ptr != NULL) {
|
|
aom_highbd_quantize_b_adaptive_helper_c(
|
|
coeff_ptr, n_coeffs, p->zbin_QTX, p->round_QTX, p->quant_QTX,
|
|
p->quant_shift_QTX, qcoeff_ptr, dqcoeff_ptr, p->dequant_QTX, eob_ptr,
|
|
sc->scan, sc->iscan, qm_ptr, iqm_ptr, qparam->log_scale);
|
|
} else {
|
|
switch (qparam->log_scale) {
|
|
case 0:
|
|
aom_highbd_quantize_b_adaptive(
|
|
coeff_ptr, n_coeffs, p->zbin_QTX, p->round_QTX, p->quant_QTX,
|
|
p->quant_shift_QTX, qcoeff_ptr, dqcoeff_ptr, p->dequant_QTX,
|
|
eob_ptr, sc->scan, sc->iscan);
|
|
break;
|
|
case 1:
|
|
aom_highbd_quantize_b_32x32_adaptive(
|
|
coeff_ptr, n_coeffs, p->zbin_QTX, p->round_QTX, p->quant_QTX,
|
|
p->quant_shift_QTX, qcoeff_ptr, dqcoeff_ptr, p->dequant_QTX,
|
|
eob_ptr, sc->scan, sc->iscan);
|
|
break;
|
|
case 2:
|
|
aom_highbd_quantize_b_64x64_adaptive(
|
|
coeff_ptr, n_coeffs, p->zbin_QTX, p->round_QTX, p->quant_QTX,
|
|
p->quant_shift_QTX, qcoeff_ptr, dqcoeff_ptr, p->dequant_QTX,
|
|
eob_ptr, sc->scan, sc->iscan);
|
|
break;
|
|
default: assert(0);
|
|
}
|
|
}
|
|
return;
|
|
}
|
|
#endif // !CONFIG_REALTIME_ONLY
|
|
|
|
if (qm_ptr != NULL && iqm_ptr != NULL) {
|
|
aom_highbd_quantize_b_helper_c(
|
|
coeff_ptr, n_coeffs, p->zbin_QTX, p->round_QTX, p->quant_QTX,
|
|
p->quant_shift_QTX, qcoeff_ptr, dqcoeff_ptr, p->dequant_QTX, eob_ptr,
|
|
sc->scan, sc->iscan, qm_ptr, iqm_ptr, qparam->log_scale);
|
|
} else {
|
|
switch (qparam->log_scale) {
|
|
case 0:
|
|
aom_highbd_quantize_b(coeff_ptr, n_coeffs, p->zbin_QTX, p->round_QTX,
|
|
p->quant_QTX, p->quant_shift_QTX, qcoeff_ptr,
|
|
dqcoeff_ptr, p->dequant_QTX, eob_ptr, sc->scan,
|
|
sc->iscan);
|
|
break;
|
|
case 1:
|
|
aom_highbd_quantize_b_32x32(
|
|
coeff_ptr, n_coeffs, p->zbin_QTX, p->round_QTX, p->quant_QTX,
|
|
p->quant_shift_QTX, qcoeff_ptr, dqcoeff_ptr, p->dequant_QTX,
|
|
eob_ptr, sc->scan, sc->iscan);
|
|
break;
|
|
case 2:
|
|
aom_highbd_quantize_b_64x64(
|
|
coeff_ptr, n_coeffs, p->zbin_QTX, p->round_QTX, p->quant_QTX,
|
|
p->quant_shift_QTX, qcoeff_ptr, dqcoeff_ptr, p->dequant_QTX,
|
|
eob_ptr, sc->scan, sc->iscan);
|
|
break;
|
|
default: assert(0);
|
|
}
|
|
}
|
|
}
|
|
|
|
static inline void highbd_quantize_dc(
|
|
const tran_low_t *coeff_ptr, int n_coeffs, int skip_block,
|
|
const int16_t *round_ptr, const int16_t quant, tran_low_t *qcoeff_ptr,
|
|
tran_low_t *dqcoeff_ptr, const int16_t dequant_ptr, uint16_t *eob_ptr,
|
|
const qm_val_t *qm_ptr, const qm_val_t *iqm_ptr, const int log_scale) {
|
|
int eob = -1;
|
|
|
|
memset(qcoeff_ptr, 0, n_coeffs * sizeof(*qcoeff_ptr));
|
|
memset(dqcoeff_ptr, 0, n_coeffs * sizeof(*dqcoeff_ptr));
|
|
|
|
if (!skip_block) {
|
|
const qm_val_t wt = qm_ptr != NULL ? qm_ptr[0] : (1 << AOM_QM_BITS);
|
|
const qm_val_t iwt = iqm_ptr != NULL ? iqm_ptr[0] : (1 << AOM_QM_BITS);
|
|
const int coeff = coeff_ptr[0];
|
|
const int coeff_sign = AOMSIGN(coeff);
|
|
const int abs_coeff = (coeff ^ coeff_sign) - coeff_sign;
|
|
const int64_t tmp = abs_coeff + ROUND_POWER_OF_TWO(round_ptr[0], log_scale);
|
|
const int64_t tmpw = tmp * wt;
|
|
const int abs_qcoeff =
|
|
(int)((tmpw * quant) >> (16 - log_scale + AOM_QM_BITS));
|
|
qcoeff_ptr[0] = (tran_low_t)((abs_qcoeff ^ coeff_sign) - coeff_sign);
|
|
const int dequant =
|
|
(dequant_ptr * iwt + (1 << (AOM_QM_BITS - 1))) >> AOM_QM_BITS;
|
|
|
|
const tran_low_t abs_dqcoeff = (abs_qcoeff * dequant) >> log_scale;
|
|
dqcoeff_ptr[0] = (tran_low_t)((abs_dqcoeff ^ coeff_sign) - coeff_sign);
|
|
if (abs_qcoeff) eob = 0;
|
|
}
|
|
*eob_ptr = eob + 1;
|
|
}
|
|
|
|
void av1_highbd_quantize_dc_facade(const tran_low_t *coeff_ptr,
|
|
intptr_t n_coeffs, const MACROBLOCK_PLANE *p,
|
|
tran_low_t *qcoeff_ptr,
|
|
tran_low_t *dqcoeff_ptr, uint16_t *eob_ptr,
|
|
const SCAN_ORDER *sc,
|
|
const QUANT_PARAM *qparam) {
|
|
// obsolete skip_block
|
|
const int skip_block = 0;
|
|
const qm_val_t *qm_ptr = qparam->qmatrix;
|
|
const qm_val_t *iqm_ptr = qparam->iqmatrix;
|
|
(void)sc;
|
|
|
|
highbd_quantize_dc(coeff_ptr, (int)n_coeffs, skip_block, p->round_QTX,
|
|
p->quant_fp_QTX[0], qcoeff_ptr, dqcoeff_ptr,
|
|
p->dequant_QTX[0], eob_ptr, qm_ptr, iqm_ptr,
|
|
qparam->log_scale);
|
|
}
|
|
|
|
void av1_highbd_quantize_fp_c(const tran_low_t *coeff_ptr, intptr_t count,
|
|
const int16_t *zbin_ptr, const int16_t *round_ptr,
|
|
const int16_t *quant_ptr,
|
|
const int16_t *quant_shift_ptr,
|
|
tran_low_t *qcoeff_ptr, tran_low_t *dqcoeff_ptr,
|
|
const int16_t *dequant_ptr, uint16_t *eob_ptr,
|
|
const int16_t *scan, const int16_t *iscan,
|
|
int log_scale) {
|
|
highbd_quantize_fp_helper_c(coeff_ptr, count, zbin_ptr, round_ptr, quant_ptr,
|
|
quant_shift_ptr, qcoeff_ptr, dqcoeff_ptr,
|
|
dequant_ptr, eob_ptr, scan, iscan, NULL, NULL,
|
|
log_scale);
|
|
}
|
|
#endif // CONFIG_AV1_HIGHBITDEPTH
|
|
|
|
static void invert_quant(int16_t *quant, int16_t *shift, int d) {
|
|
uint32_t t;
|
|
int l, m;
|
|
t = d;
|
|
l = get_msb(t);
|
|
m = 1 + (1 << (16 + l)) / d;
|
|
*quant = (int16_t)(m - (1 << 16));
|
|
*shift = 1 << (16 - l);
|
|
}
|
|
|
|
static int get_qzbin_factor(int q, aom_bit_depth_t bit_depth) {
|
|
const int quant = av1_dc_quant_QTX(q, 0, bit_depth);
|
|
switch (bit_depth) {
|
|
case AOM_BITS_8: return q == 0 ? 64 : (quant < 148 ? 84 : 80);
|
|
case AOM_BITS_10: return q == 0 ? 64 : (quant < 592 ? 84 : 80);
|
|
case AOM_BITS_12: return q == 0 ? 64 : (quant < 2368 ? 84 : 80);
|
|
default:
|
|
assert(0 && "bit_depth should be AOM_BITS_8, AOM_BITS_10 or AOM_BITS_12");
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
void av1_build_quantizer(aom_bit_depth_t bit_depth, int y_dc_delta_q,
|
|
int u_dc_delta_q, int u_ac_delta_q, int v_dc_delta_q,
|
|
int v_ac_delta_q, QUANTS *const quants,
|
|
Dequants *const deq, int sharpness) {
|
|
int i, q, quant_QTX;
|
|
const int sharpness_adjustment = 16 * (7 - sharpness) / 7;
|
|
|
|
for (q = 0; q < QINDEX_RANGE; q++) {
|
|
const int qzbin_factor = get_qzbin_factor(q, bit_depth);
|
|
int qrounding_factor = q == 0 ? 64 : 48;
|
|
|
|
for (i = 0; i < 2; ++i) {
|
|
int qrounding_factor_fp = 64;
|
|
|
|
if (sharpness != 0 && q != 0) {
|
|
qrounding_factor = 64 - sharpness_adjustment;
|
|
qrounding_factor_fp = 64 - sharpness_adjustment;
|
|
}
|
|
|
|
// y quantizer with TX scale
|
|
quant_QTX = i == 0 ? av1_dc_quant_QTX(q, y_dc_delta_q, bit_depth)
|
|
: av1_ac_quant_QTX(q, 0, bit_depth);
|
|
invert_quant(&quants->y_quant[q][i], &quants->y_quant_shift[q][i],
|
|
quant_QTX);
|
|
quants->y_quant_fp[q][i] = (1 << 16) / quant_QTX;
|
|
quants->y_round_fp[q][i] = (qrounding_factor_fp * quant_QTX) >> 7;
|
|
quants->y_zbin[q][i] = ROUND_POWER_OF_TWO(qzbin_factor * quant_QTX, 7);
|
|
quants->y_round[q][i] = (qrounding_factor * quant_QTX) >> 7;
|
|
deq->y_dequant_QTX[q][i] = quant_QTX;
|
|
|
|
// u quantizer with TX scale
|
|
quant_QTX = i == 0 ? av1_dc_quant_QTX(q, u_dc_delta_q, bit_depth)
|
|
: av1_ac_quant_QTX(q, u_ac_delta_q, bit_depth);
|
|
invert_quant(&quants->u_quant[q][i], &quants->u_quant_shift[q][i],
|
|
quant_QTX);
|
|
quants->u_quant_fp[q][i] = (1 << 16) / quant_QTX;
|
|
quants->u_round_fp[q][i] = (qrounding_factor_fp * quant_QTX) >> 7;
|
|
quants->u_zbin[q][i] = ROUND_POWER_OF_TWO(qzbin_factor * quant_QTX, 7);
|
|
quants->u_round[q][i] = (qrounding_factor * quant_QTX) >> 7;
|
|
deq->u_dequant_QTX[q][i] = quant_QTX;
|
|
|
|
// v quantizer with TX scale
|
|
quant_QTX = i == 0 ? av1_dc_quant_QTX(q, v_dc_delta_q, bit_depth)
|
|
: av1_ac_quant_QTX(q, v_ac_delta_q, bit_depth);
|
|
invert_quant(&quants->v_quant[q][i], &quants->v_quant_shift[q][i],
|
|
quant_QTX);
|
|
quants->v_quant_fp[q][i] = (1 << 16) / quant_QTX;
|
|
quants->v_round_fp[q][i] = (qrounding_factor_fp * quant_QTX) >> 7;
|
|
quants->v_zbin[q][i] = ROUND_POWER_OF_TWO(qzbin_factor * quant_QTX, 7);
|
|
quants->v_round[q][i] = (qrounding_factor * quant_QTX) >> 7;
|
|
deq->v_dequant_QTX[q][i] = quant_QTX;
|
|
}
|
|
|
|
for (i = 2; i < 8; i++) { // 8: SIMD width
|
|
quants->y_quant[q][i] = quants->y_quant[q][1];
|
|
quants->y_quant_fp[q][i] = quants->y_quant_fp[q][1];
|
|
quants->y_round_fp[q][i] = quants->y_round_fp[q][1];
|
|
quants->y_quant_shift[q][i] = quants->y_quant_shift[q][1];
|
|
quants->y_zbin[q][i] = quants->y_zbin[q][1];
|
|
quants->y_round[q][i] = quants->y_round[q][1];
|
|
deq->y_dequant_QTX[q][i] = deq->y_dequant_QTX[q][1];
|
|
|
|
quants->u_quant[q][i] = quants->u_quant[q][1];
|
|
quants->u_quant_fp[q][i] = quants->u_quant_fp[q][1];
|
|
quants->u_round_fp[q][i] = quants->u_round_fp[q][1];
|
|
quants->u_quant_shift[q][i] = quants->u_quant_shift[q][1];
|
|
quants->u_zbin[q][i] = quants->u_zbin[q][1];
|
|
quants->u_round[q][i] = quants->u_round[q][1];
|
|
deq->u_dequant_QTX[q][i] = deq->u_dequant_QTX[q][1];
|
|
|
|
quants->v_quant[q][i] = quants->v_quant[q][1];
|
|
quants->v_quant_fp[q][i] = quants->v_quant_fp[q][1];
|
|
quants->v_round_fp[q][i] = quants->v_round_fp[q][1];
|
|
quants->v_quant_shift[q][i] = quants->v_quant_shift[q][1];
|
|
quants->v_zbin[q][i] = quants->v_zbin[q][1];
|
|
quants->v_round[q][i] = quants->v_round[q][1];
|
|
deq->v_dequant_QTX[q][i] = deq->v_dequant_QTX[q][1];
|
|
}
|
|
}
|
|
}
|
|
|
|
static inline bool deltaq_params_have_changed(
|
|
const DeltaQuantParams *prev_deltaq_params,
|
|
const CommonQuantParams *quant_params) {
|
|
return (prev_deltaq_params->y_dc_delta_q != quant_params->y_dc_delta_q ||
|
|
prev_deltaq_params->u_dc_delta_q != quant_params->u_dc_delta_q ||
|
|
prev_deltaq_params->v_dc_delta_q != quant_params->v_dc_delta_q ||
|
|
prev_deltaq_params->u_ac_delta_q != quant_params->u_ac_delta_q ||
|
|
prev_deltaq_params->v_ac_delta_q != quant_params->v_ac_delta_q ||
|
|
prev_deltaq_params->sharpness != quant_params->sharpness);
|
|
}
|
|
|
|
void av1_init_quantizer(EncQuantDequantParams *const enc_quant_dequant_params,
|
|
CommonQuantParams *quant_params,
|
|
aom_bit_depth_t bit_depth, int sharpness) {
|
|
DeltaQuantParams *const prev_deltaq_params =
|
|
&enc_quant_dequant_params->prev_deltaq_params;
|
|
quant_params->sharpness = sharpness;
|
|
|
|
// Re-initialize the quantizer only if any of the dc/ac deltaq parameters
|
|
// change.
|
|
if (!deltaq_params_have_changed(prev_deltaq_params, quant_params)) return;
|
|
QUANTS *const quants = &enc_quant_dequant_params->quants;
|
|
Dequants *const dequants = &enc_quant_dequant_params->dequants;
|
|
av1_build_quantizer(bit_depth, quant_params->y_dc_delta_q,
|
|
quant_params->u_dc_delta_q, quant_params->u_ac_delta_q,
|
|
quant_params->v_dc_delta_q, quant_params->v_ac_delta_q,
|
|
quants, dequants, sharpness);
|
|
|
|
// Record the state of deltaq parameters.
|
|
prev_deltaq_params->y_dc_delta_q = quant_params->y_dc_delta_q;
|
|
prev_deltaq_params->u_dc_delta_q = quant_params->u_dc_delta_q;
|
|
prev_deltaq_params->v_dc_delta_q = quant_params->v_dc_delta_q;
|
|
prev_deltaq_params->u_ac_delta_q = quant_params->u_ac_delta_q;
|
|
prev_deltaq_params->v_ac_delta_q = quant_params->v_ac_delta_q;
|
|
prev_deltaq_params->sharpness = sharpness;
|
|
}
|
|
|
|
/*!\brief Update quantize parameters in MACROBLOCK
|
|
*
|
|
* \param[in] enc_quant_dequant_params This parameter cached the quantize and
|
|
* dequantize parameters for all q
|
|
* indices.
|
|
* \param[in] qindex Quantize index used for the current
|
|
* superblock.
|
|
* \param[out] x A superblock data structure for
|
|
* encoder.
|
|
*/
|
|
static void set_q_index(const EncQuantDequantParams *enc_quant_dequant_params,
|
|
int qindex, MACROBLOCK *x) {
|
|
const QUANTS *const quants = &enc_quant_dequant_params->quants;
|
|
const Dequants *const dequants = &enc_quant_dequant_params->dequants;
|
|
x->qindex = qindex;
|
|
x->seg_skip_block =
|
|
0; // TODO(angiebird): Find a proper place to init this variable.
|
|
|
|
// Y
|
|
x->plane[0].quant_QTX = quants->y_quant[qindex];
|
|
x->plane[0].quant_fp_QTX = quants->y_quant_fp[qindex];
|
|
x->plane[0].round_fp_QTX = quants->y_round_fp[qindex];
|
|
x->plane[0].quant_shift_QTX = quants->y_quant_shift[qindex];
|
|
x->plane[0].zbin_QTX = quants->y_zbin[qindex];
|
|
x->plane[0].round_QTX = quants->y_round[qindex];
|
|
x->plane[0].dequant_QTX = dequants->y_dequant_QTX[qindex];
|
|
|
|
// U
|
|
x->plane[1].quant_QTX = quants->u_quant[qindex];
|
|
x->plane[1].quant_fp_QTX = quants->u_quant_fp[qindex];
|
|
x->plane[1].round_fp_QTX = quants->u_round_fp[qindex];
|
|
x->plane[1].quant_shift_QTX = quants->u_quant_shift[qindex];
|
|
x->plane[1].zbin_QTX = quants->u_zbin[qindex];
|
|
x->plane[1].round_QTX = quants->u_round[qindex];
|
|
x->plane[1].dequant_QTX = dequants->u_dequant_QTX[qindex];
|
|
|
|
// V
|
|
x->plane[2].quant_QTX = quants->v_quant[qindex];
|
|
x->plane[2].quant_fp_QTX = quants->v_quant_fp[qindex];
|
|
x->plane[2].round_fp_QTX = quants->v_round_fp[qindex];
|
|
x->plane[2].quant_shift_QTX = quants->v_quant_shift[qindex];
|
|
x->plane[2].zbin_QTX = quants->v_zbin[qindex];
|
|
x->plane[2].round_QTX = quants->v_round[qindex];
|
|
x->plane[2].dequant_QTX = dequants->v_dequant_QTX[qindex];
|
|
}
|
|
|
|
/*!\brief Update quantize matrix in MACROBLOCKD based on segment id
|
|
*
|
|
* \param[in] quant_params Quantize parameters used by encoder and decoder
|
|
* \param[in] segment_id Segment id.
|
|
* \param[out] xd A superblock data structure used by encoder and
|
|
* decoder.
|
|
*/
|
|
static void set_qmatrix(const CommonQuantParams *quant_params, int segment_id,
|
|
MACROBLOCKD *xd) {
|
|
const int use_qmatrix = av1_use_qmatrix(quant_params, xd, segment_id);
|
|
const int qmlevel_y =
|
|
use_qmatrix ? quant_params->qmatrix_level_y : NUM_QM_LEVELS - 1;
|
|
const int qmlevel_u =
|
|
use_qmatrix ? quant_params->qmatrix_level_u : NUM_QM_LEVELS - 1;
|
|
const int qmlevel_v =
|
|
use_qmatrix ? quant_params->qmatrix_level_v : NUM_QM_LEVELS - 1;
|
|
const int qmlevel_ls[MAX_MB_PLANE] = { qmlevel_y, qmlevel_u, qmlevel_v };
|
|
for (int i = 0; i < MAX_MB_PLANE; ++i) {
|
|
const int qmlevel = qmlevel_ls[i];
|
|
memcpy(&xd->plane[i].seg_qmatrix[segment_id],
|
|
quant_params->gqmatrix[qmlevel][i],
|
|
sizeof(quant_params->gqmatrix[qmlevel][i]));
|
|
memcpy(&xd->plane[i].seg_iqmatrix[segment_id],
|
|
quant_params->giqmatrix[qmlevel][i],
|
|
sizeof(quant_params->giqmatrix[qmlevel][i]));
|
|
}
|
|
}
|
|
|
|
void av1_init_plane_quantizers(const AV1_COMP *cpi, MACROBLOCK *x,
|
|
int segment_id, const int do_update) {
|
|
const AV1_COMMON *const cm = &cpi->common;
|
|
const CommonQuantParams *const quant_params = &cm->quant_params;
|
|
const GF_GROUP *const gf_group = &cpi->ppi->gf_group;
|
|
const int boost_index = AOMMIN(15, (cpi->ppi->p_rc.gfu_boost / 100));
|
|
const int layer_depth = AOMMIN(gf_group->layer_depth[cpi->gf_frame_index], 6);
|
|
const FRAME_TYPE frame_type = cm->current_frame.frame_type;
|
|
int qindex_rd;
|
|
|
|
const int current_qindex = AOMMAX(
|
|
0,
|
|
AOMMIN(QINDEX_RANGE - 1, cm->delta_q_info.delta_q_present_flag
|
|
? quant_params->base_qindex + x->delta_qindex
|
|
: quant_params->base_qindex));
|
|
const int qindex = av1_get_qindex(&cm->seg, segment_id, current_qindex);
|
|
|
|
if (cpi->oxcf.sb_qp_sweep) {
|
|
const int current_rd_qindex =
|
|
AOMMAX(0, AOMMIN(QINDEX_RANGE - 1, cm->delta_q_info.delta_q_present_flag
|
|
? quant_params->base_qindex +
|
|
x->rdmult_delta_qindex
|
|
: quant_params->base_qindex));
|
|
qindex_rd = av1_get_qindex(&cm->seg, segment_id, current_rd_qindex);
|
|
} else {
|
|
qindex_rd = qindex;
|
|
}
|
|
|
|
const int qindex_rdmult = qindex_rd + quant_params->y_dc_delta_q;
|
|
const int rdmult = av1_compute_rd_mult(
|
|
qindex_rdmult, cm->seq_params->bit_depth,
|
|
cpi->ppi->gf_group.update_type[cpi->gf_frame_index], layer_depth,
|
|
boost_index, frame_type, cpi->oxcf.q_cfg.use_fixed_qp_offsets,
|
|
is_stat_consumption_stage(cpi), cpi->oxcf.tune_cfg.tuning);
|
|
|
|
const int qindex_change = x->qindex != qindex;
|
|
if (qindex_change || do_update) {
|
|
set_q_index(&cpi->enc_quant_dequant_params, qindex, x);
|
|
}
|
|
|
|
MACROBLOCKD *const xd = &x->e_mbd;
|
|
if ((segment_id != x->prev_segment_id) ||
|
|
av1_use_qmatrix(quant_params, xd, segment_id)) {
|
|
set_qmatrix(quant_params, segment_id, xd);
|
|
}
|
|
|
|
x->seg_skip_block = segfeature_active(&cm->seg, segment_id, SEG_LVL_SKIP);
|
|
|
|
av1_set_error_per_bit(&x->errorperbit, rdmult);
|
|
av1_set_sad_per_bit(cpi, &x->sadperbit, qindex_rd);
|
|
|
|
x->prev_segment_id = segment_id;
|
|
}
|
|
|
|
void av1_frame_init_quantizer(AV1_COMP *cpi) {
|
|
MACROBLOCK *const x = &cpi->td.mb;
|
|
MACROBLOCKD *const xd = &x->e_mbd;
|
|
x->prev_segment_id = -1;
|
|
av1_init_plane_quantizers(cpi, x, xd->mi[0]->segment_id, 1);
|
|
}
|
|
|
|
static int adjust_hdr_cb_deltaq(int base_qindex) {
|
|
double baseQp = base_qindex / QP_SCALE_FACTOR;
|
|
const double chromaQp = CHROMA_QP_SCALE * baseQp + CHROMA_QP_OFFSET;
|
|
const double dcbQP = CHROMA_CB_QP_SCALE * chromaQp * QP_SCALE_FACTOR;
|
|
int dqpCb = (int)(dcbQP + (dcbQP < 0 ? -0.5 : 0.5));
|
|
dqpCb = AOMMIN(0, dqpCb);
|
|
dqpCb = (int)CLIP(dqpCb, -12 * QP_SCALE_FACTOR, 12 * QP_SCALE_FACTOR);
|
|
return dqpCb;
|
|
}
|
|
|
|
static int adjust_hdr_cr_deltaq(int base_qindex) {
|
|
double baseQp = base_qindex / QP_SCALE_FACTOR;
|
|
const double chromaQp = CHROMA_QP_SCALE * baseQp + CHROMA_QP_OFFSET;
|
|
const double dcrQP = CHROMA_CR_QP_SCALE * chromaQp * QP_SCALE_FACTOR;
|
|
int dqpCr = (int)(dcrQP + (dcrQP < 0 ? -0.5 : 0.5));
|
|
dqpCr = AOMMIN(0, dqpCr);
|
|
dqpCr = (int)CLIP(dqpCr, -12 * QP_SCALE_FACTOR, 12 * QP_SCALE_FACTOR);
|
|
return dqpCr;
|
|
}
|
|
|
|
void av1_set_quantizer(AV1_COMMON *const cm, int min_qmlevel, int max_qmlevel,
|
|
int q, int enable_chroma_deltaq, int enable_hdr_deltaq,
|
|
bool is_allintra, aom_tune_metric tuning) {
|
|
// quantizer has to be reinitialized with av1_init_quantizer() if any
|
|
// delta_q changes.
|
|
CommonQuantParams *quant_params = &cm->quant_params;
|
|
quant_params->base_qindex = AOMMAX(cm->delta_q_info.delta_q_present_flag, q);
|
|
quant_params->y_dc_delta_q = 0;
|
|
|
|
if (enable_chroma_deltaq) {
|
|
if (is_allintra &&
|
|
(tuning == AOM_TUNE_IQ || tuning == AOM_TUNE_SSIMULACRA2)) {
|
|
int chroma_dc_delta_q = 0;
|
|
int chroma_ac_delta_q = 0;
|
|
|
|
if (cm->seq_params->subsampling_x == 1 &&
|
|
cm->seq_params->subsampling_y == 1) {
|
|
// 4:2:0 subsampling: Constant chroma delta_q decrease (i.e. improved
|
|
// chroma quality relative to luma) with gradual ramp-down for very low
|
|
// qindexes.
|
|
// Lowering chroma delta_q by 16 was found to improve SSIMULACRA 2
|
|
// BD-Rate by 1.5-2% on Daala's subset1, as well as reducing chroma
|
|
// artifacts (smudging, discoloration) during subjective quality
|
|
// evaluations.
|
|
// The ramp-down of chroma increase was determined by generating the
|
|
// convex hull of SSIMULACRA 2 scores (for all boosts from 0-16), and
|
|
// finding a linear equation that fits the convex hull.
|
|
chroma_dc_delta_q = -clamp((quant_params->base_qindex / 2) - 14, 0, 16);
|
|
chroma_ac_delta_q = chroma_dc_delta_q;
|
|
} else if (cm->seq_params->subsampling_x == 1 &&
|
|
cm->seq_params->subsampling_y == 0) {
|
|
// 4:2:2 subsampling: Constant chroma AC delta_q increase (i.e. improved
|
|
// luma quality relative to chroma) with gradual ramp-down for very low
|
|
// qindexes.
|
|
// SSIMULACRA 2 appears to have some issues correctly scoring 4:2:2
|
|
// material. Solely optimizing for maximum scores suggests a chroma AC
|
|
// delta_q of 12 is the most efficient. However, visual inspection on
|
|
// difficult-to-encode material resulted in chroma quality degrading too
|
|
// much relative to luma, and chroma channels ending up being too small
|
|
// compared to equivalent 4:4:4 or 4:2:0 encodes.
|
|
// A chroma AC delta_q of 6 was selected because encoded chroma channels
|
|
// have a much closer size to 4:4:4 and 4:2:0 encodes, and have more
|
|
// favorable visual quality characteristics.
|
|
// The ramp-down of chroma decrease was put into place to match 4:2:0
|
|
// and 4:4:4 behavior. There were no special considerations on
|
|
// SSIMULACRA 2 scores.
|
|
chroma_dc_delta_q = 0;
|
|
chroma_ac_delta_q = clamp((quant_params->base_qindex / 2), 0, 6);
|
|
} else if (cm->seq_params->subsampling_x == 0 &&
|
|
cm->seq_params->subsampling_y == 0) {
|
|
// 4:4:4 subsampling: Constant chroma AC delta_q increase (i.e. improved
|
|
// luma quality relative to chroma) with gradual ramp-down for very low
|
|
// qindexes.
|
|
// Raising chroma AC delta_q by 24 was found to improve SSIMULACRA 2
|
|
// BD-Rate by 2.5-3% on Daala's subset1, as well as providing a more
|
|
// balanced bit allocation between the (relatively-starved) luma and
|
|
// chroma channels.
|
|
// Raising chroma DC delta_q appears to be harmful, both for SSIMULACRA
|
|
// 2 scores and subjective quality (harshens blocking artifacts).
|
|
// The ramp-down of chroma decrease was put into place so (lossy) QP 0
|
|
// encodes still score within 0.1 SSIMULACRA 2 points of the equivalent
|
|
// with no chroma delta_q (with a small efficiency improvement), while
|
|
// encodes in the SSIMULACRA 2 <=90 range yield full benefits from this
|
|
// adjustment.
|
|
chroma_dc_delta_q = 0;
|
|
chroma_ac_delta_q = clamp((quant_params->base_qindex / 2), 0, 24);
|
|
}
|
|
|
|
// TODO: bug https://crbug.com/aomedia/375221136 - find chroma_delta_q
|
|
// values for 4:2:2 subsampling mode.
|
|
quant_params->u_dc_delta_q = chroma_dc_delta_q;
|
|
quant_params->u_ac_delta_q = chroma_ac_delta_q;
|
|
quant_params->v_dc_delta_q = chroma_dc_delta_q;
|
|
quant_params->v_ac_delta_q = chroma_ac_delta_q;
|
|
} else {
|
|
// TODO(aomedia:2717): need to design better delta
|
|
quant_params->u_dc_delta_q = 2;
|
|
quant_params->u_ac_delta_q = 2;
|
|
quant_params->v_dc_delta_q = 2;
|
|
quant_params->v_ac_delta_q = 2;
|
|
}
|
|
} else {
|
|
quant_params->u_dc_delta_q = 0;
|
|
quant_params->u_ac_delta_q = 0;
|
|
quant_params->v_dc_delta_q = 0;
|
|
quant_params->v_ac_delta_q = 0;
|
|
}
|
|
|
|
// following section 8.3.2 in T-REC-H.Sup15 document
|
|
// to apply to AV1 qindex in the range of [0, 255]
|
|
if (enable_hdr_deltaq) {
|
|
int dqpCb = adjust_hdr_cb_deltaq(quant_params->base_qindex);
|
|
int dqpCr = adjust_hdr_cr_deltaq(quant_params->base_qindex);
|
|
quant_params->u_dc_delta_q = quant_params->u_ac_delta_q = dqpCb;
|
|
quant_params->v_dc_delta_q = quant_params->v_ac_delta_q = dqpCr;
|
|
if (dqpCb != dqpCr) {
|
|
cm->seq_params->separate_uv_delta_q = 1;
|
|
}
|
|
}
|
|
|
|
// Select the best luma and chroma QM formulas based on encoding mode and
|
|
// tuning
|
|
int (*get_luma_qmlevel)(int, int, int);
|
|
int (*get_chroma_qmlevel)(int, int, int);
|
|
|
|
if (is_allintra) {
|
|
if (tuning == AOM_TUNE_IQ || tuning == AOM_TUNE_SSIMULACRA2) {
|
|
if (tuning == AOM_TUNE_SSIMULACRA2) {
|
|
// Use luma QM formula specifically tailored for tune SSIMULACRA2
|
|
get_luma_qmlevel = aom_get_qmlevel_luma_ssimulacra2;
|
|
} else {
|
|
get_luma_qmlevel = aom_get_qmlevel_allintra;
|
|
}
|
|
|
|
if (cm->seq_params->subsampling_x == 0 &&
|
|
cm->seq_params->subsampling_y == 0) {
|
|
// 4:4:4 subsampling mode has 4x the number of chroma coefficients
|
|
// compared to 4:2:0 (2x on each dimension). This means the encoder
|
|
// should use lower chroma QM levels that more closely match the scaling
|
|
// of an equivalent 4:2:0 chroma QM.
|
|
get_chroma_qmlevel = aom_get_qmlevel_444_chroma;
|
|
} else {
|
|
// For all other chroma subsampling modes, use the all intra QM formula
|
|
get_chroma_qmlevel = aom_get_qmlevel_allintra;
|
|
}
|
|
} else {
|
|
get_luma_qmlevel = aom_get_qmlevel_allintra;
|
|
get_chroma_qmlevel = aom_get_qmlevel_allintra;
|
|
}
|
|
} else {
|
|
get_luma_qmlevel = aom_get_qmlevel;
|
|
get_chroma_qmlevel = aom_get_qmlevel;
|
|
}
|
|
|
|
quant_params->qmatrix_level_y =
|
|
get_luma_qmlevel(quant_params->base_qindex, min_qmlevel, max_qmlevel);
|
|
quant_params->qmatrix_level_u =
|
|
get_chroma_qmlevel(quant_params->base_qindex + quant_params->u_ac_delta_q,
|
|
min_qmlevel, max_qmlevel);
|
|
|
|
if (cm->seq_params->separate_uv_delta_q) {
|
|
quant_params->qmatrix_level_v = get_chroma_qmlevel(
|
|
quant_params->base_qindex + quant_params->v_ac_delta_q, min_qmlevel,
|
|
max_qmlevel);
|
|
} else {
|
|
quant_params->qmatrix_level_v = quant_params->qmatrix_level_u;
|
|
}
|
|
}
|
|
|
|
// Table that converts 0-63 Q-range values passed in outside to the Qindex
|
|
// range used internally.
|
|
static const int quantizer_to_qindex[] = {
|
|
0, 4, 8, 12, 16, 20, 24, 28, 32, 36, 40, 44, 48,
|
|
52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92, 96, 100,
|
|
104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144, 148, 152,
|
|
156, 160, 164, 168, 172, 176, 180, 184, 188, 192, 196, 200, 204,
|
|
208, 212, 216, 220, 224, 228, 232, 236, 240, 244, 249, 255,
|
|
};
|
|
|
|
int av1_quantizer_to_qindex(int quantizer) {
|
|
return quantizer_to_qindex[quantizer];
|
|
}
|
|
|
|
int av1_qindex_to_quantizer(int qindex) {
|
|
int quantizer;
|
|
|
|
for (quantizer = 0; quantizer < 64; ++quantizer)
|
|
if (quantizer_to_qindex[quantizer] >= qindex) return quantizer;
|
|
|
|
return 63;
|
|
}
|