501 lines
19 KiB
C
501 lines
19 KiB
C
/*
|
|
* Copyright (c) 2016, Alliance for Open Media. All rights reserved.
|
|
*
|
|
* This source code is subject to the terms of the BSD 2 Clause License and
|
|
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
|
|
* was not distributed with this source code in the LICENSE file, you can
|
|
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
|
|
* Media Patent License 1.0 was not distributed with this source code in the
|
|
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
|
|
*/
|
|
|
|
#include "av1/common/common.h"
|
|
#include "av1/common/pred_common.h"
|
|
#include "av1/common/reconinter.h"
|
|
#include "av1/common/reconintra.h"
|
|
#include "av1/common/seg_common.h"
|
|
|
|
// Returns a context number for the given MB prediction signal
|
|
static InterpFilter get_ref_filter_type(const MB_MODE_INFO *ref_mbmi,
|
|
const MACROBLOCKD *xd, int dir,
|
|
MV_REFERENCE_FRAME ref_frame) {
|
|
(void)xd;
|
|
|
|
return ((ref_mbmi->ref_frame[0] == ref_frame ||
|
|
ref_mbmi->ref_frame[1] == ref_frame)
|
|
? av1_extract_interp_filter(ref_mbmi->interp_filters, dir & 0x01)
|
|
: SWITCHABLE_FILTERS);
|
|
}
|
|
|
|
int av1_get_pred_context_switchable_interp(const MACROBLOCKD *xd, int dir) {
|
|
const MB_MODE_INFO *const mbmi = xd->mi[0];
|
|
const int ctx_offset =
|
|
(mbmi->ref_frame[1] > INTRA_FRAME) * INTER_FILTER_COMP_OFFSET;
|
|
assert(dir == 0 || dir == 1);
|
|
const MV_REFERENCE_FRAME ref_frame = mbmi->ref_frame[0];
|
|
// Note:
|
|
// The mode info data structure has a one element border above and to the
|
|
// left of the entries corresponding to real macroblocks.
|
|
// The prediction flags in these dummy entries are initialized to 0.
|
|
int filter_type_ctx = ctx_offset + (dir & 0x01) * INTER_FILTER_DIR_OFFSET;
|
|
int left_type = SWITCHABLE_FILTERS;
|
|
int above_type = SWITCHABLE_FILTERS;
|
|
|
|
if (xd->left_available)
|
|
left_type = get_ref_filter_type(xd->mi[-1], xd, dir, ref_frame);
|
|
|
|
if (xd->up_available)
|
|
above_type =
|
|
get_ref_filter_type(xd->mi[-xd->mi_stride], xd, dir, ref_frame);
|
|
|
|
if (left_type == above_type) {
|
|
filter_type_ctx += left_type;
|
|
} else if (left_type == SWITCHABLE_FILTERS) {
|
|
assert(above_type != SWITCHABLE_FILTERS);
|
|
filter_type_ctx += above_type;
|
|
} else if (above_type == SWITCHABLE_FILTERS) {
|
|
assert(left_type != SWITCHABLE_FILTERS);
|
|
filter_type_ctx += left_type;
|
|
} else {
|
|
filter_type_ctx += SWITCHABLE_FILTERS;
|
|
}
|
|
|
|
return filter_type_ctx;
|
|
}
|
|
|
|
static void palette_add_to_cache(uint16_t *cache, int *n, uint16_t val) {
|
|
// Do not add an already existing value
|
|
if (*n > 0 && val == cache[*n - 1]) return;
|
|
|
|
cache[(*n)++] = val;
|
|
}
|
|
|
|
int av1_get_palette_cache(const MACROBLOCKD *const xd, int plane,
|
|
uint16_t *cache) {
|
|
const int row = -xd->mb_to_top_edge >> 3;
|
|
// Do not refer to above SB row when on SB boundary.
|
|
const MB_MODE_INFO *const above_mi =
|
|
(row % (1 << MIN_SB_SIZE_LOG2)) ? xd->above_mbmi : NULL;
|
|
const MB_MODE_INFO *const left_mi = xd->left_mbmi;
|
|
int above_n = 0, left_n = 0;
|
|
if (above_mi) above_n = above_mi->palette_mode_info.palette_size[plane != 0];
|
|
if (left_mi) left_n = left_mi->palette_mode_info.palette_size[plane != 0];
|
|
if (above_n == 0 && left_n == 0) return 0;
|
|
int above_idx = plane * PALETTE_MAX_SIZE;
|
|
int left_idx = plane * PALETTE_MAX_SIZE;
|
|
int n = 0;
|
|
const uint16_t *above_colors =
|
|
above_mi ? above_mi->palette_mode_info.palette_colors : NULL;
|
|
const uint16_t *left_colors =
|
|
left_mi ? left_mi->palette_mode_info.palette_colors : NULL;
|
|
// Merge the sorted lists of base colors from above and left to get
|
|
// combined sorted color cache.
|
|
while (above_n > 0 && left_n > 0) {
|
|
uint16_t v_above = above_colors[above_idx];
|
|
uint16_t v_left = left_colors[left_idx];
|
|
if (v_left < v_above) {
|
|
palette_add_to_cache(cache, &n, v_left);
|
|
++left_idx, --left_n;
|
|
} else {
|
|
palette_add_to_cache(cache, &n, v_above);
|
|
++above_idx, --above_n;
|
|
if (v_left == v_above) ++left_idx, --left_n;
|
|
}
|
|
}
|
|
while (above_n-- > 0) {
|
|
uint16_t val = above_colors[above_idx++];
|
|
palette_add_to_cache(cache, &n, val);
|
|
}
|
|
while (left_n-- > 0) {
|
|
uint16_t val = left_colors[left_idx++];
|
|
palette_add_to_cache(cache, &n, val);
|
|
}
|
|
assert(n <= 2 * PALETTE_MAX_SIZE);
|
|
return n;
|
|
}
|
|
|
|
// The mode info data structure has a one element border above and to the
|
|
// left of the entries corresponding to real macroblocks.
|
|
// The prediction flags in these dummy entries are initialized to 0.
|
|
// 0 - inter/inter, inter/--, --/inter, --/--
|
|
// 1 - intra/inter, inter/intra
|
|
// 2 - intra/--, --/intra
|
|
// 3 - intra/intra
|
|
int av1_get_intra_inter_context(const MACROBLOCKD *xd) {
|
|
const MB_MODE_INFO *const above_mbmi = xd->above_mbmi;
|
|
const MB_MODE_INFO *const left_mbmi = xd->left_mbmi;
|
|
const int has_above = xd->up_available;
|
|
const int has_left = xd->left_available;
|
|
|
|
if (has_above && has_left) { // both edges available
|
|
const int above_intra = !is_inter_block(above_mbmi);
|
|
const int left_intra = !is_inter_block(left_mbmi);
|
|
return left_intra && above_intra ? 3 : left_intra || above_intra;
|
|
} else if (has_above || has_left) { // one edge available
|
|
return 2 * !is_inter_block(has_above ? above_mbmi : left_mbmi);
|
|
} else {
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
#define CHECK_BACKWARD_REFS(ref_frame) \
|
|
(((ref_frame) >= BWDREF_FRAME) && ((ref_frame) <= ALTREF_FRAME))
|
|
#define IS_BACKWARD_REF_FRAME(ref_frame) CHECK_BACKWARD_REFS(ref_frame)
|
|
|
|
int av1_get_reference_mode_context(const MACROBLOCKD *xd) {
|
|
int ctx;
|
|
const MB_MODE_INFO *const above_mbmi = xd->above_mbmi;
|
|
const MB_MODE_INFO *const left_mbmi = xd->left_mbmi;
|
|
const int has_above = xd->up_available;
|
|
const int has_left = xd->left_available;
|
|
|
|
// Note:
|
|
// The mode info data structure has a one element border above and to the
|
|
// left of the entries corresponding to real macroblocks.
|
|
// The prediction flags in these dummy entries are initialized to 0.
|
|
if (has_above && has_left) { // both edges available
|
|
if (!has_second_ref(above_mbmi) && !has_second_ref(left_mbmi))
|
|
// neither edge uses comp pred (0/1)
|
|
ctx = IS_BACKWARD_REF_FRAME(above_mbmi->ref_frame[0]) ^
|
|
IS_BACKWARD_REF_FRAME(left_mbmi->ref_frame[0]);
|
|
else if (!has_second_ref(above_mbmi))
|
|
// one of two edges uses comp pred (2/3)
|
|
ctx = 2 + (IS_BACKWARD_REF_FRAME(above_mbmi->ref_frame[0]) ||
|
|
!is_inter_block(above_mbmi));
|
|
else if (!has_second_ref(left_mbmi))
|
|
// one of two edges uses comp pred (2/3)
|
|
ctx = 2 + (IS_BACKWARD_REF_FRAME(left_mbmi->ref_frame[0]) ||
|
|
!is_inter_block(left_mbmi));
|
|
else // both edges use comp pred (4)
|
|
ctx = 4;
|
|
} else if (has_above || has_left) { // one edge available
|
|
const MB_MODE_INFO *edge_mbmi = has_above ? above_mbmi : left_mbmi;
|
|
|
|
if (!has_second_ref(edge_mbmi))
|
|
// edge does not use comp pred (0/1)
|
|
ctx = IS_BACKWARD_REF_FRAME(edge_mbmi->ref_frame[0]);
|
|
else
|
|
// edge uses comp pred (3)
|
|
ctx = 3;
|
|
} else { // no edges available (1)
|
|
ctx = 1;
|
|
}
|
|
assert(ctx >= 0 && ctx < COMP_INTER_CONTEXTS);
|
|
return ctx;
|
|
}
|
|
|
|
int av1_get_comp_reference_type_context(const MACROBLOCKD *xd) {
|
|
int pred_context;
|
|
const MB_MODE_INFO *const above_mbmi = xd->above_mbmi;
|
|
const MB_MODE_INFO *const left_mbmi = xd->left_mbmi;
|
|
const int above_in_image = xd->up_available;
|
|
const int left_in_image = xd->left_available;
|
|
|
|
if (above_in_image && left_in_image) { // both edges available
|
|
const int above_intra = !is_inter_block(above_mbmi);
|
|
const int left_intra = !is_inter_block(left_mbmi);
|
|
|
|
if (above_intra && left_intra) { // intra/intra
|
|
pred_context = 2;
|
|
} else if (above_intra || left_intra) { // intra/inter
|
|
const MB_MODE_INFO *inter_mbmi = above_intra ? left_mbmi : above_mbmi;
|
|
|
|
if (!has_second_ref(inter_mbmi)) // single pred
|
|
pred_context = 2;
|
|
else // comp pred
|
|
pred_context = 1 + 2 * has_uni_comp_refs(inter_mbmi);
|
|
} else { // inter/inter
|
|
const int a_sg = !has_second_ref(above_mbmi);
|
|
const int l_sg = !has_second_ref(left_mbmi);
|
|
const MV_REFERENCE_FRAME frfa = above_mbmi->ref_frame[0];
|
|
const MV_REFERENCE_FRAME frfl = left_mbmi->ref_frame[0];
|
|
|
|
if (a_sg && l_sg) { // single/single
|
|
pred_context = 1 + 2 * (!(IS_BACKWARD_REF_FRAME(frfa) ^
|
|
IS_BACKWARD_REF_FRAME(frfl)));
|
|
} else if (l_sg || a_sg) { // single/comp
|
|
const int uni_rfc =
|
|
a_sg ? has_uni_comp_refs(left_mbmi) : has_uni_comp_refs(above_mbmi);
|
|
|
|
if (!uni_rfc) // comp bidir
|
|
pred_context = 1;
|
|
else // comp unidir
|
|
pred_context = 3 + (!(IS_BACKWARD_REF_FRAME(frfa) ^
|
|
IS_BACKWARD_REF_FRAME(frfl)));
|
|
} else { // comp/comp
|
|
const int a_uni_rfc = has_uni_comp_refs(above_mbmi);
|
|
const int l_uni_rfc = has_uni_comp_refs(left_mbmi);
|
|
|
|
if (!a_uni_rfc && !l_uni_rfc) // bidir/bidir
|
|
pred_context = 0;
|
|
else if (!a_uni_rfc || !l_uni_rfc) // unidir/bidir
|
|
pred_context = 2;
|
|
else // unidir/unidir
|
|
pred_context =
|
|
3 + (!((frfa == BWDREF_FRAME) ^ (frfl == BWDREF_FRAME)));
|
|
}
|
|
}
|
|
} else if (above_in_image || left_in_image) { // one edge available
|
|
const MB_MODE_INFO *edge_mbmi = above_in_image ? above_mbmi : left_mbmi;
|
|
|
|
if (!is_inter_block(edge_mbmi)) { // intra
|
|
pred_context = 2;
|
|
} else { // inter
|
|
if (!has_second_ref(edge_mbmi)) // single pred
|
|
pred_context = 2;
|
|
else // comp pred
|
|
pred_context = 4 * has_uni_comp_refs(edge_mbmi);
|
|
}
|
|
} else { // no edges available
|
|
pred_context = 2;
|
|
}
|
|
|
|
assert(pred_context >= 0 && pred_context < COMP_REF_TYPE_CONTEXTS);
|
|
return pred_context;
|
|
}
|
|
|
|
// Returns a context number for the given MB prediction signal
|
|
//
|
|
// Signal the uni-directional compound reference frame pair as either
|
|
// (BWDREF, ALTREF), or (LAST, LAST2) / (LAST, LAST3) / (LAST, GOLDEN),
|
|
// conditioning on the pair is known as uni-directional.
|
|
//
|
|
// 3 contexts: Voting is used to compare the count of forward references with
|
|
// that of backward references from the spatial neighbors.
|
|
int av1_get_pred_context_uni_comp_ref_p(const MACROBLOCKD *xd) {
|
|
const uint8_t *const ref_counts = &xd->neighbors_ref_counts[0];
|
|
|
|
// Count of forward references (L, L2, L3, or G)
|
|
const int frf_count = ref_counts[LAST_FRAME] + ref_counts[LAST2_FRAME] +
|
|
ref_counts[LAST3_FRAME] + ref_counts[GOLDEN_FRAME];
|
|
// Count of backward references (B or A)
|
|
const int brf_count = ref_counts[BWDREF_FRAME] + ref_counts[ALTREF2_FRAME] +
|
|
ref_counts[ALTREF_FRAME];
|
|
|
|
const int pred_context =
|
|
(frf_count == brf_count) ? 1 : ((frf_count < brf_count) ? 0 : 2);
|
|
|
|
assert(pred_context >= 0 && pred_context < UNI_COMP_REF_CONTEXTS);
|
|
return pred_context;
|
|
}
|
|
|
|
// Returns a context number for the given MB prediction signal
|
|
//
|
|
// Signal the uni-directional compound reference frame pair as
|
|
// either (LAST, LAST2), or (LAST, LAST3) / (LAST, GOLDEN),
|
|
// conditioning on the pair is known as one of the above three.
|
|
//
|
|
// 3 contexts: Voting is used to compare the count of LAST2_FRAME with the
|
|
// total count of LAST3/GOLDEN from the spatial neighbors.
|
|
int av1_get_pred_context_uni_comp_ref_p1(const MACROBLOCKD *xd) {
|
|
const uint8_t *const ref_counts = &xd->neighbors_ref_counts[0];
|
|
|
|
// Count of LAST2
|
|
const int last2_count = ref_counts[LAST2_FRAME];
|
|
// Count of LAST3 or GOLDEN
|
|
const int last3_or_gld_count =
|
|
ref_counts[LAST3_FRAME] + ref_counts[GOLDEN_FRAME];
|
|
|
|
const int pred_context = (last2_count == last3_or_gld_count)
|
|
? 1
|
|
: ((last2_count < last3_or_gld_count) ? 0 : 2);
|
|
|
|
assert(pred_context >= 0 && pred_context < UNI_COMP_REF_CONTEXTS);
|
|
return pred_context;
|
|
}
|
|
|
|
// Returns a context number for the given MB prediction signal
|
|
//
|
|
// Signal the uni-directional compound reference frame pair as
|
|
// either (LAST, LAST3) or (LAST, GOLDEN),
|
|
// conditioning on the pair is known as one of the above two.
|
|
//
|
|
// 3 contexts: Voting is used to compare the count of LAST3_FRAME with the
|
|
// total count of GOLDEN_FRAME from the spatial neighbors.
|
|
int av1_get_pred_context_uni_comp_ref_p2(const MACROBLOCKD *xd) {
|
|
const uint8_t *const ref_counts = &xd->neighbors_ref_counts[0];
|
|
|
|
// Count of LAST3
|
|
const int last3_count = ref_counts[LAST3_FRAME];
|
|
// Count of GOLDEN
|
|
const int gld_count = ref_counts[GOLDEN_FRAME];
|
|
|
|
const int pred_context =
|
|
(last3_count == gld_count) ? 1 : ((last3_count < gld_count) ? 0 : 2);
|
|
|
|
assert(pred_context >= 0 && pred_context < UNI_COMP_REF_CONTEXTS);
|
|
return pred_context;
|
|
}
|
|
|
|
// == Common context functions for both comp and single ref ==
|
|
//
|
|
// Obtain contexts to signal a reference frame to be either LAST/LAST2 or
|
|
// LAST3/GOLDEN.
|
|
static int get_pred_context_ll2_or_l3gld(const MACROBLOCKD *xd) {
|
|
const uint8_t *const ref_counts = &xd->neighbors_ref_counts[0];
|
|
|
|
// Count of LAST + LAST2
|
|
const int last_last2_count = ref_counts[LAST_FRAME] + ref_counts[LAST2_FRAME];
|
|
// Count of LAST3 + GOLDEN
|
|
const int last3_gld_count =
|
|
ref_counts[LAST3_FRAME] + ref_counts[GOLDEN_FRAME];
|
|
|
|
const int pred_context = (last_last2_count == last3_gld_count)
|
|
? 1
|
|
: ((last_last2_count < last3_gld_count) ? 0 : 2);
|
|
|
|
assert(pred_context >= 0 && pred_context < REF_CONTEXTS);
|
|
return pred_context;
|
|
}
|
|
|
|
// Obtain contexts to signal a reference frame to be either LAST or LAST2.
|
|
static int get_pred_context_last_or_last2(const MACROBLOCKD *xd) {
|
|
const uint8_t *const ref_counts = &xd->neighbors_ref_counts[0];
|
|
|
|
// Count of LAST
|
|
const int last_count = ref_counts[LAST_FRAME];
|
|
// Count of LAST2
|
|
const int last2_count = ref_counts[LAST2_FRAME];
|
|
|
|
const int pred_context =
|
|
(last_count == last2_count) ? 1 : ((last_count < last2_count) ? 0 : 2);
|
|
|
|
assert(pred_context >= 0 && pred_context < REF_CONTEXTS);
|
|
return pred_context;
|
|
}
|
|
|
|
// Obtain contexts to signal a reference frame to be either LAST3 or GOLDEN.
|
|
static int get_pred_context_last3_or_gld(const MACROBLOCKD *xd) {
|
|
const uint8_t *const ref_counts = &xd->neighbors_ref_counts[0];
|
|
|
|
// Count of LAST3
|
|
const int last3_count = ref_counts[LAST3_FRAME];
|
|
// Count of GOLDEN
|
|
const int gld_count = ref_counts[GOLDEN_FRAME];
|
|
|
|
const int pred_context =
|
|
(last3_count == gld_count) ? 1 : ((last3_count < gld_count) ? 0 : 2);
|
|
|
|
assert(pred_context >= 0 && pred_context < REF_CONTEXTS);
|
|
return pred_context;
|
|
}
|
|
|
|
// Obtain contexts to signal a reference frame be either BWDREF/ALTREF2, or
|
|
// ALTREF.
|
|
static int get_pred_context_brfarf2_or_arf(const MACROBLOCKD *xd) {
|
|
const uint8_t *const ref_counts = &xd->neighbors_ref_counts[0];
|
|
|
|
// Counts of BWDREF, ALTREF2, or ALTREF frames (B, A2, or A)
|
|
const int brfarf2_count =
|
|
ref_counts[BWDREF_FRAME] + ref_counts[ALTREF2_FRAME];
|
|
const int arf_count = ref_counts[ALTREF_FRAME];
|
|
|
|
const int pred_context =
|
|
(brfarf2_count == arf_count) ? 1 : ((brfarf2_count < arf_count) ? 0 : 2);
|
|
|
|
assert(pred_context >= 0 && pred_context < REF_CONTEXTS);
|
|
return pred_context;
|
|
}
|
|
|
|
// Obtain contexts to signal a reference frame be either BWDREF or ALTREF2.
|
|
static int get_pred_context_brf_or_arf2(const MACROBLOCKD *xd) {
|
|
const uint8_t *const ref_counts = &xd->neighbors_ref_counts[0];
|
|
|
|
// Count of BWDREF frames (B)
|
|
const int brf_count = ref_counts[BWDREF_FRAME];
|
|
// Count of ALTREF2 frames (A2)
|
|
const int arf2_count = ref_counts[ALTREF2_FRAME];
|
|
|
|
const int pred_context =
|
|
(brf_count == arf2_count) ? 1 : ((brf_count < arf2_count) ? 0 : 2);
|
|
|
|
assert(pred_context >= 0 && pred_context < REF_CONTEXTS);
|
|
return pred_context;
|
|
}
|
|
|
|
// == Context functions for comp ref ==
|
|
//
|
|
// Returns a context number for the given MB prediction signal
|
|
// Signal the first reference frame for a compound mode be either
|
|
// GOLDEN/LAST3, or LAST/LAST2.
|
|
int av1_get_pred_context_comp_ref_p(const MACROBLOCKD *xd) {
|
|
return get_pred_context_ll2_or_l3gld(xd);
|
|
}
|
|
|
|
// Returns a context number for the given MB prediction signal
|
|
// Signal the first reference frame for a compound mode be LAST,
|
|
// conditioning on that it is known either LAST/LAST2.
|
|
int av1_get_pred_context_comp_ref_p1(const MACROBLOCKD *xd) {
|
|
return get_pred_context_last_or_last2(xd);
|
|
}
|
|
|
|
// Returns a context number for the given MB prediction signal
|
|
// Signal the first reference frame for a compound mode be GOLDEN,
|
|
// conditioning on that it is known either GOLDEN or LAST3.
|
|
int av1_get_pred_context_comp_ref_p2(const MACROBLOCKD *xd) {
|
|
return get_pred_context_last3_or_gld(xd);
|
|
}
|
|
|
|
// Signal the 2nd reference frame for a compound mode be either
|
|
// ALTREF, or ALTREF2/BWDREF.
|
|
int av1_get_pred_context_comp_bwdref_p(const MACROBLOCKD *xd) {
|
|
return get_pred_context_brfarf2_or_arf(xd);
|
|
}
|
|
|
|
// Signal the 2nd reference frame for a compound mode be either
|
|
// ALTREF2 or BWDREF.
|
|
int av1_get_pred_context_comp_bwdref_p1(const MACROBLOCKD *xd) {
|
|
return get_pred_context_brf_or_arf2(xd);
|
|
}
|
|
|
|
// == Context functions for single ref ==
|
|
//
|
|
// For the bit to signal whether the single reference is a forward reference
|
|
// frame or a backward reference frame.
|
|
int av1_get_pred_context_single_ref_p1(const MACROBLOCKD *xd) {
|
|
const uint8_t *const ref_counts = &xd->neighbors_ref_counts[0];
|
|
|
|
// Count of forward reference frames
|
|
const int fwd_count = ref_counts[LAST_FRAME] + ref_counts[LAST2_FRAME] +
|
|
ref_counts[LAST3_FRAME] + ref_counts[GOLDEN_FRAME];
|
|
// Count of backward reference frames
|
|
const int bwd_count = ref_counts[BWDREF_FRAME] + ref_counts[ALTREF2_FRAME] +
|
|
ref_counts[ALTREF_FRAME];
|
|
|
|
const int pred_context =
|
|
(fwd_count == bwd_count) ? 1 : ((fwd_count < bwd_count) ? 0 : 2);
|
|
|
|
assert(pred_context >= 0 && pred_context < REF_CONTEXTS);
|
|
return pred_context;
|
|
}
|
|
|
|
// For the bit to signal whether the single reference is ALTREF_FRAME or
|
|
// non-ALTREF backward reference frame, knowing that it shall be either of
|
|
// these 2 choices.
|
|
int av1_get_pred_context_single_ref_p2(const MACROBLOCKD *xd) {
|
|
return get_pred_context_brfarf2_or_arf(xd);
|
|
}
|
|
|
|
// For the bit to signal whether the single reference is LAST3/GOLDEN or
|
|
// LAST2/LAST, knowing that it shall be either of these 2 choices.
|
|
int av1_get_pred_context_single_ref_p3(const MACROBLOCKD *xd) {
|
|
return get_pred_context_ll2_or_l3gld(xd);
|
|
}
|
|
|
|
// For the bit to signal whether the single reference is LAST2_FRAME or
|
|
// LAST_FRAME, knowing that it shall be either of these 2 choices.
|
|
int av1_get_pred_context_single_ref_p4(const MACROBLOCKD *xd) {
|
|
return get_pred_context_last_or_last2(xd);
|
|
}
|
|
|
|
// For the bit to signal whether the single reference is GOLDEN_FRAME or
|
|
// LAST3_FRAME, knowing that it shall be either of these 2 choices.
|
|
int av1_get_pred_context_single_ref_p5(const MACROBLOCKD *xd) {
|
|
return get_pred_context_last3_or_gld(xd);
|
|
}
|
|
|
|
// For the bit to signal whether the single reference is ALTREF2_FRAME or
|
|
// BWDREF_FRAME, knowing that it shall be either of these 2 choices.
|
|
int av1_get_pred_context_single_ref_p6(const MACROBLOCKD *xd) {
|
|
return get_pred_context_brf_or_arf2(xd);
|
|
}
|