trisquel-icecat/icecat/third_party/jpeg-xl/lib/jpegli/decode_scan.cc
2025-10-06 02:35:48 -06:00

567 lines
17 KiB
C++
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

// Copyright (c) the JPEG XL Project Authors. All rights reserved.
//
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
#include "lib/jpegli/decode_scan.h"
#include <string.h>
#include <hwy/base.h> // HWY_ALIGN_MAX
#include "lib/jpegli/decode_internal.h"
#include "lib/jpegli/error.h"
#include "lib/jxl/base/status.h"
namespace jpegli {
namespace {
// Max 14 block per MCU (when 1 channel is subsampled)
// Max 64 nonzero coefficients per block
// Max 16 symbol bits plus 11 extra bits per nonzero symbol
// Max 2 bytes per 8 bits (worst case is all bytes are escaped 0xff)
constexpr int kMaxMCUByteSize = 6048;
// Helper structure to read bits from the entropy coded data segment.
struct BitReaderState {
BitReaderState(const uint8_t* data, const size_t len, size_t pos)
: data_(data), len_(len), start_pos_(pos) {
Reset(pos);
}
void Reset(size_t pos) {
pos_ = pos;
val_ = 0;
bits_left_ = 0;
next_marker_pos_ = len_;
FillBitWindow();
}
// Returns the next byte and skips the 0xff/0x00 escape sequences.
uint8_t GetNextByte() {
if (pos_ >= next_marker_pos_) {
++pos_;
return 0;
}
uint8_t c = data_[pos_++];
if (c == 0xff) {
uint8_t escape = pos_ < len_ ? data_[pos_] : 0;
if (escape == 0) {
++pos_;
} else {
// 0xff was followed by a non-zero byte, which means that we found the
// start of the next marker segment.
next_marker_pos_ = pos_ - 1;
}
}
return c;
}
void FillBitWindow() {
if (bits_left_ <= 16) {
while (bits_left_ <= 56) {
val_ <<= 8;
val_ |= static_cast<uint64_t>(GetNextByte());
bits_left_ += 8;
}
}
}
int ReadBits(int nbits) {
FillBitWindow();
uint64_t val = (val_ >> (bits_left_ - nbits)) & ((1ULL << nbits) - 1);
bits_left_ -= nbits;
return val;
}
// Sets *pos to the next stream position, and *bit_pos to the bit position
// within the next byte where parsing should continue.
// Returns false if the stream ended too early.
bool FinishStream(size_t* pos, size_t* bit_pos) {
*bit_pos = (8 - (bits_left_ & 7)) & 7;
// Give back some bytes that we did not use.
int unused_bytes_left = DivCeil(bits_left_, 8);
while (unused_bytes_left-- > 0) {
--pos_;
// If we give back a 0 byte, we need to check if it was a 0xff/0x00 escape
// sequence, and if yes, we need to give back one more byte.
if (((pos_ == len_ && pos_ == next_marker_pos_) ||
(pos_ > 0 && pos_ < next_marker_pos_ && data_[pos_] == 0)) &&
(data_[pos_ - 1] == 0xff)) {
--pos_;
}
}
if (pos_ >= next_marker_pos_) {
*pos = next_marker_pos_;
if (pos_ > next_marker_pos_ || *bit_pos > 0) {
// Data ran out before the scan was complete.
return false;
}
}
*pos = pos_;
return true;
}
const uint8_t* data_;
const size_t len_;
size_t pos_;
uint64_t val_;
int bits_left_;
size_t next_marker_pos_;
size_t start_pos_;
};
// Returns the next Huffman-coded symbol.
int ReadSymbol(const HuffmanTableEntry* table, BitReaderState* br) {
int nbits;
br->FillBitWindow();
int val = (br->val_ >> (br->bits_left_ - 8)) & 0xff;
table += val;
nbits = table->bits - 8;
if (nbits > 0) {
br->bits_left_ -= 8;
table += table->value;
val = (br->val_ >> (br->bits_left_ - nbits)) & ((1 << nbits) - 1);
table += val;
}
br->bits_left_ -= table->bits;
return table->value;
}
/**
* Returns the DC diff or AC value for extra bits value x and prefix code s.
*
* CCITT Rec. T.81 (1992 E)
* Table F.1 Difference magnitude categories for DC coding
* SSSS | DIFF values
* ------+--------------------------
* 0 | 0
* 1 | 1, 1
* 2 | 3, 2, 2, 3
* 3 | 7..4, 4..7
* ......|..........................
* 11 | 2047..1024, 1024..2047
*
* CCITT Rec. T.81 (1992 E)
* Table F.2 Categories assigned to coefficient values
* [ Same as Table F.1, but does not include SSSS equal to 0 and 11]
*
*
* CCITT Rec. T.81 (1992 E)
* F.1.2.1.1 Structure of DC code table
* For each category,... additional bits... appended... to uniquely identify
* which difference... occurred... When DIFF is positive... SSSS... bits of DIFF
* are appended. When DIFF is negative... SSSS... bits of (DIFF 1) are
* appended... Most significant bit... is 0 for negative differences and 1 for
* positive differences.
*
* In other words the upper half of extra bits range represents DIFF as is.
* The lower half represents the negative DIFFs with an offset.
*/
int HuffExtend(int x, int s) {
JXL_DASSERT(s > 0);
int half = 1 << (s - 1);
if (x >= half) {
JXL_DASSERT(x < (1 << s));
return x;
} else {
return x - (1 << s) + 1;
}
}
// Decodes one 8x8 block of DCT coefficients from the bit stream.
bool DecodeDCTBlock(const HuffmanTableEntry* dc_huff,
const HuffmanTableEntry* ac_huff, int Ss, int Se, int Al,
int* eobrun, BitReaderState* br, coeff_t* last_dc_coeff,
coeff_t* coeffs) {
// Nowadays multiplication is even faster than variable shift.
int Am = 1 << Al;
bool eobrun_allowed = Ss > 0;
if (Ss == 0) {
int s = ReadSymbol(dc_huff, br);
if (s >= kJpegDCAlphabetSize) {
return false;
}
int diff = 0;
if (s > 0) {
int bits = br->ReadBits(s);
diff = HuffExtend(bits, s);
}
int coeff = diff + *last_dc_coeff;
const int dc_coeff = coeff * Am;
coeffs[0] = dc_coeff;
// TODO(eustas): is there a more elegant / explicit way to check this?
if (dc_coeff != coeffs[0]) {
return false;
}
*last_dc_coeff = coeff;
++Ss;
}
if (Ss > Se) {
return true;
}
if (*eobrun > 0) {
--(*eobrun);
return true;
}
for (int k = Ss; k <= Se; k++) {
int sr = ReadSymbol(ac_huff, br);
if (sr >= kJpegHuffmanAlphabetSize) {
return false;
}
int r = sr >> 4;
int s = sr & 15;
if (s > 0) {
k += r;
if (k > Se) {
return false;
}
if (s + Al >= kJpegDCAlphabetSize) {
return false;
}
int bits = br->ReadBits(s);
int coeff = HuffExtend(bits, s);
coeffs[kJPEGNaturalOrder[k]] = coeff * Am;
} else if (r == 15) {
k += 15;
} else {
*eobrun = 1 << r;
if (r > 0) {
if (!eobrun_allowed) {
return false;
}
*eobrun += br->ReadBits(r);
}
break;
}
}
--(*eobrun);
return true;
}
bool RefineDCTBlock(const HuffmanTableEntry* ac_huff, int Ss, int Se, int Al,
int* eobrun, BitReaderState* br, coeff_t* coeffs) {
// Nowadays multiplication is even faster than variable shift.
int Am = 1 << Al;
bool eobrun_allowed = Ss > 0;
if (Ss == 0) {
int s = br->ReadBits(1);
coeff_t dc_coeff = coeffs[0];
dc_coeff |= s * Am;
coeffs[0] = dc_coeff;
++Ss;
}
if (Ss > Se) {
return true;
}
int p1 = Am;
int m1 = -Am;
int k = Ss;
int r;
int s;
bool in_zero_run = false;
if (*eobrun <= 0) {
for (; k <= Se; k++) {
s = ReadSymbol(ac_huff, br);
if (s >= kJpegHuffmanAlphabetSize) {
return false;
}
r = s >> 4;
s &= 15;
if (s) {
if (s != 1) {
return false;
}
s = br->ReadBits(1) ? p1 : m1;
in_zero_run = false;
} else {
if (r != 15) {
*eobrun = 1 << r;
if (r > 0) {
if (!eobrun_allowed) {
return false;
}
*eobrun += br->ReadBits(r);
}
break;
}
in_zero_run = true;
}
do {
coeff_t thiscoef = coeffs[kJPEGNaturalOrder[k]];
if (thiscoef != 0) {
if (br->ReadBits(1)) {
if ((thiscoef & p1) == 0) {
if (thiscoef >= 0) {
thiscoef += p1;
} else {
thiscoef += m1;
}
}
}
coeffs[kJPEGNaturalOrder[k]] = thiscoef;
} else {
if (--r < 0) {
break;
}
}
k++;
} while (k <= Se);
if (s) {
if (k > Se) {
return false;
}
coeffs[kJPEGNaturalOrder[k]] = s;
}
}
}
if (in_zero_run) {
return false;
}
if (*eobrun > 0) {
for (; k <= Se; k++) {
coeff_t thiscoef = coeffs[kJPEGNaturalOrder[k]];
if (thiscoef != 0) {
if (br->ReadBits(1)) {
if ((thiscoef & p1) == 0) {
if (thiscoef >= 0) {
thiscoef += p1;
} else {
thiscoef += m1;
}
}
}
coeffs[kJPEGNaturalOrder[k]] = thiscoef;
}
}
}
--(*eobrun);
return true;
}
void SaveMCUCodingState(j_decompress_ptr cinfo) {
jpeg_decomp_master* m = cinfo->master;
memcpy(m->mcu_.last_dc_coeff, m->last_dc_coeff_, sizeof(m->last_dc_coeff_));
m->mcu_.eobrun = m->eobrun_;
size_t offset = 0;
for (int i = 0; i < cinfo->comps_in_scan; ++i) {
const jpeg_component_info* comp = cinfo->cur_comp_info[i];
int c = comp->component_index;
size_t block_x = m->scan_mcu_col_ * comp->MCU_width;
for (int iy = 0; iy < comp->MCU_height; ++iy) {
size_t block_y = m->scan_mcu_row_ * comp->MCU_height + iy;
size_t biy = block_y % comp->v_samp_factor;
if (block_y >= comp->height_in_blocks) {
continue;
}
size_t nblocks =
std::min<size_t>(comp->MCU_width, comp->width_in_blocks - block_x);
size_t ncoeffs = nblocks * DCTSIZE2;
coeff_t* coeffs = &m->coeff_rows[c][biy][block_x][0];
memcpy(&m->mcu_.coeffs[offset], coeffs, ncoeffs * sizeof(coeffs[0]));
offset += ncoeffs;
}
}
}
void RestoreMCUCodingState(j_decompress_ptr cinfo) {
jpeg_decomp_master* m = cinfo->master;
memcpy(m->last_dc_coeff_, m->mcu_.last_dc_coeff, sizeof(m->last_dc_coeff_));
m->eobrun_ = m->mcu_.eobrun;
size_t offset = 0;
for (int i = 0; i < cinfo->comps_in_scan; ++i) {
const jpeg_component_info* comp = cinfo->cur_comp_info[i];
int c = comp->component_index;
size_t block_x = m->scan_mcu_col_ * comp->MCU_width;
for (int iy = 0; iy < comp->MCU_height; ++iy) {
size_t block_y = m->scan_mcu_row_ * comp->MCU_height + iy;
size_t biy = block_y % comp->v_samp_factor;
if (block_y >= comp->height_in_blocks) {
continue;
}
size_t nblocks =
std::min<size_t>(comp->MCU_width, comp->width_in_blocks - block_x);
size_t ncoeffs = nblocks * DCTSIZE2;
coeff_t* coeffs = &m->coeff_rows[c][biy][block_x][0];
memcpy(coeffs, &m->mcu_.coeffs[offset], ncoeffs * sizeof(coeffs[0]));
offset += ncoeffs;
}
}
}
bool FinishScan(j_decompress_ptr cinfo, const uint8_t* data, const size_t len,
size_t* pos, size_t* bit_pos) {
jpeg_decomp_master* m = cinfo->master;
if (m->eobrun_ > 0) {
JPEGLI_ERROR("End-of-block run too long.");
}
m->eobrun_ = -1;
memset(m->last_dc_coeff_, 0, sizeof(m->last_dc_coeff_));
if (*bit_pos == 0) {
return true;
}
if (data[*pos] == 0xff) {
// After last br.FinishStream we checked that there is at least 2 bytes
// in the buffer.
JXL_DASSERT(*pos + 1 < len);
// br.FinishStream would have detected an early marker.
JXL_DASSERT(data[*pos + 1] == 0);
*pos += 2;
} else {
*pos += 1;
}
*bit_pos = 0;
return true;
}
} // namespace
void PrepareForiMCURow(j_decompress_ptr cinfo) {
jpeg_decomp_master* m = cinfo->master;
for (int i = 0; i < cinfo->comps_in_scan; ++i) {
const jpeg_component_info* comp = cinfo->cur_comp_info[i];
int c = comp->component_index;
int by0 = cinfo->input_iMCU_row * comp->v_samp_factor;
int block_rows_left = comp->height_in_blocks - by0;
int max_block_rows = std::min(comp->v_samp_factor, block_rows_left);
int offset = m->streaming_mode_ ? 0 : by0;
m->coeff_rows[c] = (*cinfo->mem->access_virt_barray)(
reinterpret_cast<j_common_ptr>(cinfo), m->coef_arrays[c], offset,
max_block_rows, TRUE);
}
}
int ProcessScan(j_decompress_ptr cinfo, const uint8_t* const data,
const size_t len, size_t* pos, size_t* bit_pos) {
if (len == 0) {
return kNeedMoreInput;
}
jpeg_decomp_master* m = cinfo->master;
for (;;) {
// Handle the restart intervals.
if (cinfo->restart_interval > 0 && m->restarts_to_go_ == 0) {
if (!FinishScan(cinfo, data, len, pos, bit_pos)) {
return kNeedMoreInput;
}
// Go to the next marker, warn if we had to skip any data.
size_t num_skipped = 0;
while (*pos + 1 < len && (data[*pos] != 0xff || data[*pos + 1] == 0 ||
data[*pos + 1] == 0xff)) {
++(*pos);
++num_skipped;
}
if (num_skipped > 0) {
JPEGLI_WARN("Skipped %d bytes before restart marker",
static_cast<int>(num_skipped));
}
if (*pos + 2 > len) {
return kNeedMoreInput;
}
cinfo->unread_marker = data[*pos + 1];
*pos += 2;
return kHandleRestart;
}
size_t start_pos = *pos;
BitReaderState br(data, len, start_pos);
if (*bit_pos > 0) {
br.ReadBits(*bit_pos);
}
if (start_pos + kMaxMCUByteSize > len) {
SaveMCUCodingState(cinfo);
}
// Decode one MCU.
HWY_ALIGN_MAX static coeff_t sink_block[DCTSIZE2] = {0};
bool scan_ok = true;
for (int i = 0; i < cinfo->comps_in_scan; ++i) {
const jpeg_component_info* comp = cinfo->cur_comp_info[i];
int c = comp->component_index;
const HuffmanTableEntry* dc_lut =
&m->dc_huff_lut_[comp->dc_tbl_no * kJpegHuffmanLutSize];
const HuffmanTableEntry* ac_lut =
&m->ac_huff_lut_[comp->ac_tbl_no * kJpegHuffmanLutSize];
for (int iy = 0; iy < comp->MCU_height; ++iy) {
size_t block_y = m->scan_mcu_row_ * comp->MCU_height + iy;
int biy = block_y % comp->v_samp_factor;
for (int ix = 0; ix < comp->MCU_width; ++ix) {
size_t block_x = m->scan_mcu_col_ * comp->MCU_width + ix;
coeff_t* coeffs;
if (block_x >= comp->width_in_blocks ||
block_y >= comp->height_in_blocks) {
// Note that it is OK that sink_block is uninitialized because
// it will never be used in any branches, even in the RefineDCTBlock
// case, because only DC scans can be interleaved and we don't use
// the zero-ness of the DC coeff in the DC refinement code-path.
coeffs = sink_block;
} else {
coeffs = &m->coeff_rows[c][biy][block_x][0];
}
if (cinfo->Ah == 0) {
if (!DecodeDCTBlock(dc_lut, ac_lut, cinfo->Ss, cinfo->Se, cinfo->Al,
&m->eobrun_, &br,
&m->last_dc_coeff_[comp->component_index],
coeffs)) {
scan_ok = false;
}
} else {
if (!RefineDCTBlock(ac_lut, cinfo->Ss, cinfo->Se, cinfo->Al,
&m->eobrun_, &br, coeffs)) {
scan_ok = false;
}
}
}
}
}
size_t new_pos;
size_t new_bit_pos;
bool stream_ok = br.FinishStream(&new_pos, &new_bit_pos);
if (new_pos + 2 > len) {
// If reading stopped within the last two bytes, we have to request more
// input even if FinishStream() returned true, since the Huffman code
// reader could have peaked ahead some bits past the current input chunk
// and thus the last prefix code length could have been wrong. We can do
// this because a valid JPEG bit stream has two extra bytes at the end.
RestoreMCUCodingState(cinfo);
return kNeedMoreInput;
}
*pos = new_pos;
*bit_pos = new_bit_pos;
if (!stream_ok) {
// We hit a marker during parsing.
JXL_DASSERT(data[*pos] == 0xff);
JXL_DASSERT(data[*pos + 1] != 0);
RestoreMCUCodingState(cinfo);
JPEGLI_WARN("Incomplete scan detected.");
return JPEG_SCAN_COMPLETED;
}
if (!scan_ok) {
JPEGLI_ERROR("Failed to decode DCT block");
}
if (m->restarts_to_go_ > 0) {
--m->restarts_to_go_;
}
++m->scan_mcu_col_;
if (m->scan_mcu_col_ == cinfo->MCUs_per_row) {
++m->scan_mcu_row_;
m->scan_mcu_col_ = 0;
if (m->scan_mcu_row_ == cinfo->MCU_rows_in_scan) {
if (!FinishScan(cinfo, data, len, pos, bit_pos)) {
return kNeedMoreInput;
}
break;
} else if ((m->scan_mcu_row_ % m->mcu_rows_per_iMCU_row_) == 0) {
// Current iMCU row is done.
break;
}
}
}
++cinfo->input_iMCU_row;
if (cinfo->input_iMCU_row < cinfo->total_iMCU_rows) {
PrepareForiMCURow(cinfo);
return JPEG_ROW_COMPLETED;
}
return JPEG_SCAN_COMPLETED;
}
} // namespace jpegli