trisquel-icecat/icecat/extensions/gnu/jsr@javascriptrestrictor/wrappingL-SENSOR.js

173 lines
5.9 KiB
JavaScript

/** \file
* \brief Library of functions for the Generic Sensor API wrappers
*
* \see https://www.w3.org/TR/generic-sensor/
*
* \author Copyright (C) 2021 Radek Hranicky
*
* \license SPDX-License-Identifier: GPL-3.0-or-later
*/
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <https://www.gnu.org/licenses/>.
//
/** \file
* \ingroup wrappers
*
* Supporting fuctions for Generic Sensor API Wrappers
*/
/*
* Functions for generating pseudorandom numbers.
* To make the behavior deterministic and same on the same domain,
* the generator uses domain hash as a seed.
*/
var sensorapi_prng_functions = `
// Generates a 32-bit from a string. Inspired by MurmurHash3 algorithm
// See: https://github.com/aappleby/smhasher/blob/master/src/MurmurHash3.cpp
function sen_generateSeed(s) {
var h;
for(var i = 0, h = 1779033703 ^ s.length; i < s.length; i++)
h = Math.imul(h ^ s.charCodeAt(i), 3432918353),
h = h << 13 | h >>> 19;
return h;
}
// Get seed for PRNG: prefer existing seed, then domain hash, session hash
var sen_seed = sen_seed ||
sen_generateSeed(domainHash);
// PRNG based on Mulberry32 algorithm
// See: https://gist.github.com/tommyettinger/46a874533244883189143505d203312c
// To the extent possible under law, the author has dedicated all copyright
// and related and neighboring rights to this software to the public domain
// worldwide.
function sen_prng() {
// expects "seed" variable to be a 32-bit value
var t = sen_seed += 0x6D2B79F5;
t = Math.imul(t ^ t >>> 15, t | 1);
t ^= t + Math.imul(t ^ t >>> 7, t | 61);
return ((t ^ t >>> 14) >>> 0) / 4294967296;
}
// Generates a number around the input number
function sen_generateAround(number, tolerance) {
let min = number - number * tolerance;
let max = number + number * tolerance;
return sen_prng() * (max - min) + min;
}
// Rounds a number to a fixed amount of decimal places
// Returns a NUMBER
function fixedNumber(num, digits, base) {
var pow = Math.pow(base||10, digits);
return Math.round(num*pow) / pow;
}
`;
/*
* Functions for simulation of the device orientation.
* Those allow to create a fake orientation of the device in axis angles
* and create a rotation matrix. Support for multiplication of a 3D vector
* with the rotation matrix is included.
*
* Note: The code needs supporting function from the
* "sensorapi_prng_functions" above.
*
* In case of a non-rotated phone with a display oriented directly to the
* face of the user, the device's axes are oriented as follows:
* x-axis is oriented from the user's left to the right
* y-axis from the bottom side of the display towards the top side
* z-axis is perpendicular to the display, it leads from the phone's
* display towards the user's face
*
* The yaw, pitch, and roll define the rotation of the phone in the Earth's
* reference coordinate system. In case, all are 0:
* x is oriented towards the EAST
* y is oriented towards the NORTH (Earth's magnetic)
* -z is oriented toward the center of the Earth
*
* y (roll)
* / (NORTH if yaw = pitch = 0)
* /
* +----------+
* / / /
* (top) / z(yaw) /
* / |/ /
* / +-----/----> x (pitch)
* / / (EAST if yaw = roll = 0)
* / _ _ /
* / /__/ /
* +----------+
* (bottom)
*
*/
var device_orientation_functions = `
// Calcultes a rotation matrix for the given yaw, pitch, and roll
// (in radians) of the device.
function calculateRotationMatrix(yaw, pitch, roll) {
var rotMat = [
[Math.cos(yaw) * Math.cos(pitch),
Math.cos(yaw) * Math.sin(pitch) * Math.sin(roll) - Math.sin(yaw) * Math.cos(roll),
Math.cos(yaw) * Math.sin(pitch) * Math.cos(roll) + Math.sin(yaw) * Math.sin(roll)
],
[Math.sin(yaw) * Math.cos(pitch),
Math.sin(yaw) * Math.sin(pitch) * Math.sin(roll) + Math.cos(yaw) * Math.cos(roll),
Math.sin(yaw) * Math.sin(pitch) * Math.cos(roll) - Math.cos(yaw) * Math.sin(roll)
],
[(-1) * Math.sin(pitch),
Math.cos(pitch) * Math.sin(roll),
Math.cos(pitch) * Math.cos(roll)
]
];
return rotMat;
}
// Initial draw of the (fake) device orientation
// TODO: Limit to oriententations that make sense for a mobile device
function generateDeviceOrientation() {
var orient = {};
/*
* Yaw (couterclockwise rotation of the Z-axis)
* Pitch (counterclockwise rotation of the Y-axis)
* Roll (counterclockwise rotation of the X-axis)
*/
var yaw = Math.floor(sen_prng() * 2 * Math.PI);
var pitch = Math.floor(sen_prng() * 2 * Math.PI);
var roll = Math.floor(sen_prng() * 2 * Math.PI);
orient.yaw = yaw;
orient.pitch = pitch;
orient.roll = roll;
// Calculate the rotation matrix
orient.rotMat = calculateRotationMatrix(yaw, pitch, roll);
return orient;
}
var orient = orient || generateDeviceOrientation();
// Multiplies a 3D strength vector (1x3) with a 3D rotation matrix (3x3)
// Returns the resulting 3D vector (1x3)
function multVectRot(vec, mat) {
var result = [
vec[0]*mat[0][0] + vec[1]*mat[0][1] + vec[2]*mat[0][2],
vec[0]*mat[1][0] + vec[1]*mat[1][1] + vec[2]*mat[1][2],
vec[0]*mat[2][0] + vec[1]*mat[2][1] + vec[2]*mat[2][2]
]
return result;
}
`;