trisquel-icecat/icecat/third_party/highway/hwy/ops/generic_ops-inl.h

3190 lines
131 KiB
C++

// Copyright 2021 Google LLC
// SPDX-License-Identifier: Apache-2.0
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Target-independent types/functions defined after target-specific ops.
#include "hwy/base.h"
// Define detail::Shuffle1230 etc, but only when viewing the current header;
// normally this is included via highway.h, which includes ops/*.h.
#if HWY_IDE && !defined(HWY_HIGHWAY_INCLUDED)
#include "hwy/detect_targets.h"
#include "hwy/ops/emu128-inl.h"
#endif // HWY_IDE
// Relies on the external include guard in highway.h.
HWY_BEFORE_NAMESPACE();
namespace hwy {
namespace HWY_NAMESPACE {
// The lane type of a vector type, e.g. float for Vec<ScalableTag<float>>.
template <class V>
using LaneType = decltype(GetLane(V()));
// Vector type, e.g. Vec128<float> for CappedTag<float, 4>. Useful as the return
// type of functions that do not take a vector argument, or as an argument type
// if the function only has a template argument for D, or for explicit type
// names instead of auto. This may be a built-in type.
template <class D>
using Vec = decltype(Zero(D()));
// Mask type. Useful as the return type of functions that do not take a mask
// argument, or as an argument type if the function only has a template argument
// for D, or for explicit type names instead of auto.
template <class D>
using Mask = decltype(MaskFromVec(Zero(D())));
// Returns the closest value to v within [lo, hi].
template <class V>
HWY_API V Clamp(const V v, const V lo, const V hi) {
return Min(Max(lo, v), hi);
}
// CombineShiftRightBytes (and -Lanes) are not available for the scalar target,
// and RVV has its own implementation of -Lanes.
#if HWY_TARGET != HWY_SCALAR && HWY_TARGET != HWY_RVV
template <size_t kLanes, class D>
HWY_API VFromD<D> CombineShiftRightLanes(D d, VFromD<D> hi, VFromD<D> lo) {
constexpr size_t kBytes = kLanes * sizeof(TFromD<D>);
static_assert(kBytes < 16, "Shift count is per-block");
return CombineShiftRightBytes<kBytes>(d, hi, lo);
}
#endif
// Returns lanes with the most significant bit set and all other bits zero.
template <class D>
HWY_API Vec<D> SignBit(D d) {
const RebindToUnsigned<decltype(d)> du;
return BitCast(d, Set(du, SignMask<TFromD<D>>()));
}
// Returns quiet NaN.
template <class D>
HWY_API Vec<D> NaN(D d) {
const RebindToSigned<D> di;
// LimitsMax sets all exponent and mantissa bits to 1. The exponent plus
// mantissa MSB (to indicate quiet) would be sufficient.
return BitCast(d, Set(di, LimitsMax<TFromD<decltype(di)>>()));
}
// Returns positive infinity.
template <class D>
HWY_API Vec<D> Inf(D d) {
const RebindToUnsigned<D> du;
using T = TFromD<D>;
using TU = TFromD<decltype(du)>;
const TU max_x2 = static_cast<TU>(MaxExponentTimes2<T>());
return BitCast(d, Set(du, max_x2 >> 1));
}
// ------------------------------ ZeroExtendResizeBitCast
// The implementation of detail::ZeroExtendResizeBitCast for the HWY_EMU128
// target is in emu128-inl.h, and the implementation of
// detail::ZeroExtendResizeBitCast for the HWY_SCALAR target is in scalar-inl.h
#if HWY_TARGET != HWY_EMU128 && HWY_TARGET != HWY_SCALAR
namespace detail {
#if HWY_HAVE_SCALABLE
template <size_t kFromVectSize, size_t kToVectSize, class DTo, class DFrom>
HWY_INLINE VFromD<DTo> ZeroExtendResizeBitCast(
hwy::SizeTag<kFromVectSize> /* from_size_tag */,
hwy::SizeTag<kToVectSize> /* to_size_tag */, DTo d_to, DFrom d_from,
VFromD<DFrom> v) {
using TFrom = TFromD<DFrom>;
using TTo = TFromD<DTo>;
using TResize = UnsignedFromSize<HWY_MIN(sizeof(TFrom), sizeof(TTo))>;
const Repartition<TResize, decltype(d_from)> d_resize_from;
const Repartition<TResize, decltype(d_to)> d_resize_to;
return BitCast(d_to, IfThenElseZero(FirstN(d_resize_to, Lanes(d_resize_from)),
ResizeBitCast(d_resize_to, v)));
}
#else // target that uses fixed-size vectors
// Truncating or same-size resizing cast: same as ResizeBitCast
template <size_t kFromVectSize, size_t kToVectSize, class DTo, class DFrom,
HWY_IF_LANES_LE(kToVectSize, kFromVectSize)>
HWY_INLINE VFromD<DTo> ZeroExtendResizeBitCast(
hwy::SizeTag<kFromVectSize> /* from_size_tag */,
hwy::SizeTag<kToVectSize> /* to_size_tag */, DTo d_to, DFrom /*d_from*/,
VFromD<DFrom> v) {
return ResizeBitCast(d_to, v);
}
// Resizing cast to vector that has twice the number of lanes of the source
// vector
template <size_t kFromVectSize, size_t kToVectSize, class DTo, class DFrom,
HWY_IF_LANES(kToVectSize, kFromVectSize * 2)>
HWY_INLINE VFromD<DTo> ZeroExtendResizeBitCast(
hwy::SizeTag<kFromVectSize> /* from_size_tag */,
hwy::SizeTag<kToVectSize> /* to_size_tag */, DTo d_to, DFrom d_from,
VFromD<DFrom> v) {
const Twice<decltype(d_from)> dt_from;
return BitCast(d_to, ZeroExtendVector(dt_from, v));
}
// Resizing cast to vector that has more than twice the number of lanes of the
// source vector
template <size_t kFromVectSize, size_t kToVectSize, class DTo, class DFrom,
HWY_IF_LANES_GT(kToVectSize, kFromVectSize * 2)>
HWY_INLINE VFromD<DTo> ZeroExtendResizeBitCast(
hwy::SizeTag<kFromVectSize> /* from_size_tag */,
hwy::SizeTag<kToVectSize> /* to_size_tag */, DTo d_to, DFrom /*d_from*/,
VFromD<DFrom> v) {
using TFrom = TFromD<DFrom>;
constexpr size_t kNumOfFromLanes = kFromVectSize / sizeof(TFrom);
const Repartition<TFrom, decltype(d_to)> d_resize_to;
return BitCast(d_to, IfThenElseZero(FirstN(d_resize_to, kNumOfFromLanes),
ResizeBitCast(d_resize_to, v)));
}
#endif // HWY_HAVE_SCALABLE
} // namespace detail
#endif // HWY_TARGET != HWY_EMU128 && HWY_TARGET != HWY_SCALAR
template <class DTo, class DFrom>
HWY_API VFromD<DTo> ZeroExtendResizeBitCast(DTo d_to, DFrom d_from,
VFromD<DFrom> v) {
return detail::ZeroExtendResizeBitCast(hwy::SizeTag<d_from.MaxBytes()>(),
hwy::SizeTag<d_to.MaxBytes()>(), d_to,
d_from, v);
}
// ------------------------------ SafeFillN
template <class D, typename T = TFromD<D>>
HWY_API void SafeFillN(const size_t num, const T value, D d,
T* HWY_RESTRICT to) {
#if HWY_MEM_OPS_MIGHT_FAULT
(void)d;
for (size_t i = 0; i < num; ++i) {
to[i] = value;
}
#else
BlendedStore(Set(d, value), FirstN(d, num), d, to);
#endif
}
// ------------------------------ SafeCopyN
template <class D, typename T = TFromD<D>>
HWY_API void SafeCopyN(const size_t num, D d, const T* HWY_RESTRICT from,
T* HWY_RESTRICT to) {
#if HWY_MEM_OPS_MIGHT_FAULT
(void)d;
for (size_t i = 0; i < num; ++i) {
to[i] = from[i];
}
#else
const Mask<D> mask = FirstN(d, num);
BlendedStore(MaskedLoad(mask, d, from), mask, d, to);
#endif
}
// ------------------------------ BitwiseIfThenElse
#if (defined(HWY_NATIVE_BITWISE_IF_THEN_ELSE) == defined(HWY_TARGET_TOGGLE))
#ifdef HWY_NATIVE_BITWISE_IF_THEN_ELSE
#undef HWY_NATIVE_BITWISE_IF_THEN_ELSE
#else
#define HWY_NATIVE_BITWISE_IF_THEN_ELSE
#endif
template <class V>
HWY_API V BitwiseIfThenElse(V mask, V yes, V no) {
return Or(And(mask, yes), AndNot(mask, no));
}
#endif // HWY_NATIVE_BITWISE_IF_THEN_ELSE
// "Include guard": skip if native instructions are available. The generic
// implementation is currently shared between x86_* and wasm_*, and is too large
// to duplicate.
#if HWY_IDE || \
(defined(HWY_NATIVE_LOAD_STORE_INTERLEAVED) == defined(HWY_TARGET_TOGGLE))
#ifdef HWY_NATIVE_LOAD_STORE_INTERLEAVED
#undef HWY_NATIVE_LOAD_STORE_INTERLEAVED
#else
#define HWY_NATIVE_LOAD_STORE_INTERLEAVED
#endif
// ------------------------------ LoadInterleaved2
template <class D, HWY_IF_LANES_GT_D(D, 1)>
HWY_API void LoadInterleaved2(D d, const TFromD<D>* HWY_RESTRICT unaligned,
VFromD<D>& v0, VFromD<D>& v1) {
const VFromD<D> A = LoadU(d, unaligned); // v1[1] v0[1] v1[0] v0[0]
const VFromD<D> B = LoadU(d, unaligned + Lanes(d));
v0 = ConcatEven(d, B, A);
v1 = ConcatOdd(d, B, A);
}
template <class D, HWY_IF_LANES_D(D, 1)>
HWY_API void LoadInterleaved2(D d, const TFromD<D>* HWY_RESTRICT unaligned,
VFromD<D>& v0, VFromD<D>& v1) {
v0 = LoadU(d, unaligned + 0);
v1 = LoadU(d, unaligned + 1);
}
// ------------------------------ LoadInterleaved3 (CombineShiftRightBytes)
namespace detail {
#if HWY_IDE
template <class V>
HWY_INLINE V ShuffleTwo1230(V a, V /* b */) {
return a;
}
template <class V>
HWY_INLINE V ShuffleTwo2301(V a, V /* b */) {
return a;
}
template <class V>
HWY_INLINE V ShuffleTwo3012(V a, V /* b */) {
return a;
}
#endif // HWY_IDE
// Default for <= 128-bit vectors; x86_256 and x86_512 have their own overload.
template <class D, HWY_IF_V_SIZE_LE_D(D, 16)>
HWY_INLINE void LoadTransposedBlocks3(D d,
const TFromD<D>* HWY_RESTRICT unaligned,
VFromD<D>& A, VFromD<D>& B,
VFromD<D>& C) {
constexpr size_t kN = MaxLanes(d);
A = LoadU(d, unaligned + 0 * kN);
B = LoadU(d, unaligned + 1 * kN);
C = LoadU(d, unaligned + 2 * kN);
}
} // namespace detail
template <class D, HWY_IF_LANES_PER_BLOCK_D(D, 16)>
HWY_API void LoadInterleaved3(D d, const TFromD<D>* HWY_RESTRICT unaligned,
VFromD<D>& v0, VFromD<D>& v1, VFromD<D>& v2) {
const RebindToUnsigned<decltype(d)> du;
using V = VFromD<D>;
// Compact notation so these fit on one line: 12 := v1[2].
V A; // 05 24 14 04 23 13 03 22 12 02 21 11 01 20 10 00
V B; // 1a 0a 29 19 09 28 18 08 27 17 07 26 16 06 25 15
V C; // 2f 1f 0f 2e 1e 0e 2d 1d 0d 2c 1c 0c 2b 1b 0b 2a
detail::LoadTransposedBlocks3(d, unaligned, A, B, C);
// Compress all lanes belonging to v0 into consecutive lanes.
constexpr uint8_t Z = 0x80;
alignas(16) static constexpr uint8_t kIdx_v0A[16] = {
0, 3, 6, 9, 12, 15, Z, Z, Z, Z, Z, Z, Z, Z, Z, Z};
alignas(16) static constexpr uint8_t kIdx_v0B[16] = {
Z, Z, Z, Z, Z, Z, 2, 5, 8, 11, 14, Z, Z, Z, Z, Z};
alignas(16) static constexpr uint8_t kIdx_v0C[16] = {
Z, Z, Z, Z, Z, Z, Z, Z, Z, Z, Z, 1, 4, 7, 10, 13};
alignas(16) static constexpr uint8_t kIdx_v1A[16] = {
1, 4, 7, 10, 13, Z, Z, Z, Z, Z, Z, Z, Z, Z, Z, Z};
alignas(16) static constexpr uint8_t kIdx_v1B[16] = {
Z, Z, Z, Z, Z, 0, 3, 6, 9, 12, 15, Z, Z, Z, Z, Z};
alignas(16) static constexpr uint8_t kIdx_v1C[16] = {
Z, Z, Z, Z, Z, Z, Z, Z, Z, Z, Z, 2, 5, 8, 11, 14};
alignas(16) static constexpr uint8_t kIdx_v2A[16] = {
2, 5, 8, 11, 14, Z, Z, Z, Z, Z, Z, Z, Z, Z, Z, Z};
alignas(16) static constexpr uint8_t kIdx_v2B[16] = {
Z, Z, Z, Z, Z, 1, 4, 7, 10, 13, Z, Z, Z, Z, Z, Z};
alignas(16) static constexpr uint8_t kIdx_v2C[16] = {
Z, Z, Z, Z, Z, Z, Z, Z, Z, Z, 0, 3, 6, 9, 12, 15};
const V v0L = BitCast(d, TableLookupBytesOr0(A, LoadDup128(du, kIdx_v0A)));
const V v0M = BitCast(d, TableLookupBytesOr0(B, LoadDup128(du, kIdx_v0B)));
const V v0U = BitCast(d, TableLookupBytesOr0(C, LoadDup128(du, kIdx_v0C)));
const V v1L = BitCast(d, TableLookupBytesOr0(A, LoadDup128(du, kIdx_v1A)));
const V v1M = BitCast(d, TableLookupBytesOr0(B, LoadDup128(du, kIdx_v1B)));
const V v1U = BitCast(d, TableLookupBytesOr0(C, LoadDup128(du, kIdx_v1C)));
const V v2L = BitCast(d, TableLookupBytesOr0(A, LoadDup128(du, kIdx_v2A)));
const V v2M = BitCast(d, TableLookupBytesOr0(B, LoadDup128(du, kIdx_v2B)));
const V v2U = BitCast(d, TableLookupBytesOr0(C, LoadDup128(du, kIdx_v2C)));
v0 = Xor3(v0L, v0M, v0U);
v1 = Xor3(v1L, v1M, v1U);
v2 = Xor3(v2L, v2M, v2U);
}
// 8-bit lanes x8
template <class D, HWY_IF_LANES_PER_BLOCK_D(D, 8), HWY_IF_T_SIZE_D(D, 1)>
HWY_API void LoadInterleaved3(D d, const TFromD<D>* HWY_RESTRICT unaligned,
VFromD<D>& v0, VFromD<D>& v1, VFromD<D>& v2) {
const RebindToUnsigned<decltype(d)> du;
using V = VFromD<D>;
V A; // v1[2] v0[2] v2[1] v1[1] v0[1] v2[0] v1[0] v0[0]
V B; // v0[5] v2[4] v1[4] v0[4] v2[3] v1[3] v0[3] v2[2]
V C; // v2[7] v1[7] v0[7] v2[6] v1[6] v0[6] v2[5] v1[5]
detail::LoadTransposedBlocks3(d, unaligned, A, B, C);
// Compress all lanes belonging to v0 into consecutive lanes.
constexpr uint8_t Z = 0x80;
alignas(16) static constexpr uint8_t kIdx_v0A[16] = {0, 3, 6, Z, Z, Z, Z, Z};
alignas(16) static constexpr uint8_t kIdx_v0B[16] = {Z, Z, Z, 1, 4, 7, Z, Z};
alignas(16) static constexpr uint8_t kIdx_v0C[16] = {Z, Z, Z, Z, Z, Z, 2, 5};
alignas(16) static constexpr uint8_t kIdx_v1A[16] = {1, 4, 7, Z, Z, Z, Z, Z};
alignas(16) static constexpr uint8_t kIdx_v1B[16] = {Z, Z, Z, 2, 5, Z, Z, Z};
alignas(16) static constexpr uint8_t kIdx_v1C[16] = {Z, Z, Z, Z, Z, 0, 3, 6};
alignas(16) static constexpr uint8_t kIdx_v2A[16] = {2, 5, Z, Z, Z, Z, Z, Z};
alignas(16) static constexpr uint8_t kIdx_v2B[16] = {Z, Z, 0, 3, 6, Z, Z, Z};
alignas(16) static constexpr uint8_t kIdx_v2C[16] = {Z, Z, Z, Z, Z, 1, 4, 7};
const V v0L = BitCast(d, TableLookupBytesOr0(A, LoadDup128(du, kIdx_v0A)));
const V v0M = BitCast(d, TableLookupBytesOr0(B, LoadDup128(du, kIdx_v0B)));
const V v0U = BitCast(d, TableLookupBytesOr0(C, LoadDup128(du, kIdx_v0C)));
const V v1L = BitCast(d, TableLookupBytesOr0(A, LoadDup128(du, kIdx_v1A)));
const V v1M = BitCast(d, TableLookupBytesOr0(B, LoadDup128(du, kIdx_v1B)));
const V v1U = BitCast(d, TableLookupBytesOr0(C, LoadDup128(du, kIdx_v1C)));
const V v2L = BitCast(d, TableLookupBytesOr0(A, LoadDup128(du, kIdx_v2A)));
const V v2M = BitCast(d, TableLookupBytesOr0(B, LoadDup128(du, kIdx_v2B)));
const V v2U = BitCast(d, TableLookupBytesOr0(C, LoadDup128(du, kIdx_v2C)));
v0 = Xor3(v0L, v0M, v0U);
v1 = Xor3(v1L, v1M, v1U);
v2 = Xor3(v2L, v2M, v2U);
}
// 16-bit lanes x8
template <class D, HWY_IF_LANES_PER_BLOCK_D(D, 8), HWY_IF_T_SIZE_D(D, 2)>
HWY_API void LoadInterleaved3(D d, const TFromD<D>* HWY_RESTRICT unaligned,
VFromD<D>& v0, VFromD<D>& v1, VFromD<D>& v2) {
const RebindToUnsigned<decltype(d)> du;
const Repartition<uint8_t, decltype(du)> du8;
using V = VFromD<D>;
V A; // v1[2] v0[2] v2[1] v1[1] v0[1] v2[0] v1[0] v0[0]
V B; // v0[5] v2[4] v1[4] v0[4] v2[3] v1[3] v0[3] v2[2]
V C; // v2[7] v1[7] v0[7] v2[6] v1[6] v0[6] v2[5] v1[5]
detail::LoadTransposedBlocks3(d, unaligned, A, B, C);
// Compress all lanes belonging to v0 into consecutive lanes. Same as above,
// but each element of the array contains a byte index for a byte of a lane.
constexpr uint8_t Z = 0x80;
alignas(16) static constexpr uint8_t kIdx_v0A[16] = {
0x00, 0x01, 0x06, 0x07, 0x0C, 0x0D, Z, Z, Z, Z, Z, Z, Z, Z, Z, Z};
alignas(16) static constexpr uint8_t kIdx_v0B[16] = {
Z, Z, Z, Z, Z, Z, 0x02, 0x03, 0x08, 0x09, 0x0E, 0x0F, Z, Z, Z, Z};
alignas(16) static constexpr uint8_t kIdx_v0C[16] = {
Z, Z, Z, Z, Z, Z, Z, Z, Z, Z, Z, Z, 0x04, 0x05, 0x0A, 0x0B};
alignas(16) static constexpr uint8_t kIdx_v1A[16] = {
0x02, 0x03, 0x08, 0x09, 0x0E, 0x0F, Z, Z, Z, Z, Z, Z, Z, Z, Z, Z};
alignas(16) static constexpr uint8_t kIdx_v1B[16] = {
Z, Z, Z, Z, Z, Z, 0x04, 0x05, 0x0A, 0x0B, Z, Z, Z, Z, Z, Z};
alignas(16) static constexpr uint8_t kIdx_v1C[16] = {
Z, Z, Z, Z, Z, Z, Z, Z, Z, Z, 0x00, 0x01, 0x06, 0x07, 0x0C, 0x0D};
alignas(16) static constexpr uint8_t kIdx_v2A[16] = {
0x04, 0x05, 0x0A, 0x0B, Z, Z, Z, Z, Z, Z, Z, Z, Z, Z, Z, Z};
alignas(16) static constexpr uint8_t kIdx_v2B[16] = {
Z, Z, Z, Z, 0x00, 0x01, 0x06, 0x07, 0x0C, 0x0D, Z, Z, Z, Z, Z, Z};
alignas(16) static constexpr uint8_t kIdx_v2C[16] = {
Z, Z, Z, Z, Z, Z, Z, Z, Z, Z, 0x02, 0x03, 0x08, 0x09, 0x0E, 0x0F};
const V v0L = TableLookupBytesOr0(A, BitCast(d, LoadDup128(du8, kIdx_v0A)));
const V v0M = TableLookupBytesOr0(B, BitCast(d, LoadDup128(du8, kIdx_v0B)));
const V v0U = TableLookupBytesOr0(C, BitCast(d, LoadDup128(du8, kIdx_v0C)));
const V v1L = TableLookupBytesOr0(A, BitCast(d, LoadDup128(du8, kIdx_v1A)));
const V v1M = TableLookupBytesOr0(B, BitCast(d, LoadDup128(du8, kIdx_v1B)));
const V v1U = TableLookupBytesOr0(C, BitCast(d, LoadDup128(du8, kIdx_v1C)));
const V v2L = TableLookupBytesOr0(A, BitCast(d, LoadDup128(du8, kIdx_v2A)));
const V v2M = TableLookupBytesOr0(B, BitCast(d, LoadDup128(du8, kIdx_v2B)));
const V v2U = TableLookupBytesOr0(C, BitCast(d, LoadDup128(du8, kIdx_v2C)));
v0 = Xor3(v0L, v0M, v0U);
v1 = Xor3(v1L, v1M, v1U);
v2 = Xor3(v2L, v2M, v2U);
}
template <class D, HWY_IF_LANES_PER_BLOCK_D(D, 4)>
HWY_API void LoadInterleaved3(D d, const TFromD<D>* HWY_RESTRICT unaligned,
VFromD<D>& v0, VFromD<D>& v1, VFromD<D>& v2) {
using V = VFromD<D>;
V A; // v0[1] v2[0] v1[0] v0[0]
V B; // v1[2] v0[2] v2[1] v1[1]
V C; // v2[3] v1[3] v0[3] v2[2]
detail::LoadTransposedBlocks3(d, unaligned, A, B, C);
const V vxx_02_03_xx = OddEven(C, B);
v0 = detail::ShuffleTwo1230(A, vxx_02_03_xx);
// Shuffle2301 takes the upper/lower halves of the output from one input, so
// we cannot just combine 13 and 10 with 12 and 11 (similar to v0/v2). Use
// OddEven because it may have higher throughput than Shuffle.
const V vxx_xx_10_11 = OddEven(A, B);
const V v12_13_xx_xx = OddEven(B, C);
v1 = detail::ShuffleTwo2301(vxx_xx_10_11, v12_13_xx_xx);
const V vxx_20_21_xx = OddEven(B, A);
v2 = detail::ShuffleTwo3012(vxx_20_21_xx, C);
}
template <class D, HWY_IF_LANES_PER_BLOCK_D(D, 2)>
HWY_API void LoadInterleaved3(D d, const TFromD<D>* HWY_RESTRICT unaligned,
VFromD<D>& v0, VFromD<D>& v1, VFromD<D>& v2) {
VFromD<D> A; // v1[0] v0[0]
VFromD<D> B; // v0[1] v2[0]
VFromD<D> C; // v2[1] v1[1]
detail::LoadTransposedBlocks3(d, unaligned, A, B, C);
v0 = OddEven(B, A);
v1 = CombineShiftRightBytes<sizeof(TFromD<D>)>(d, C, A);
v2 = OddEven(C, B);
}
template <class D, typename T = TFromD<D>, HWY_IF_LANES_D(D, 1)>
HWY_API void LoadInterleaved3(D d, const T* HWY_RESTRICT unaligned,
VFromD<D>& v0, VFromD<D>& v1, VFromD<D>& v2) {
v0 = LoadU(d, unaligned + 0);
v1 = LoadU(d, unaligned + 1);
v2 = LoadU(d, unaligned + 2);
}
// ------------------------------ LoadInterleaved4
namespace detail {
// Default for <= 128-bit vectors; x86_256 and x86_512 have their own overload.
template <class D, HWY_IF_V_SIZE_LE_D(D, 16)>
HWY_INLINE void LoadTransposedBlocks4(D d,
const TFromD<D>* HWY_RESTRICT unaligned,
VFromD<D>& vA, VFromD<D>& vB,
VFromD<D>& vC, VFromD<D>& vD) {
constexpr size_t kN = MaxLanes(d);
vA = LoadU(d, unaligned + 0 * kN);
vB = LoadU(d, unaligned + 1 * kN);
vC = LoadU(d, unaligned + 2 * kN);
vD = LoadU(d, unaligned + 3 * kN);
}
} // namespace detail
template <class D, HWY_IF_LANES_PER_BLOCK_D(D, 16)>
HWY_API void LoadInterleaved4(D d, const TFromD<D>* HWY_RESTRICT unaligned,
VFromD<D>& v0, VFromD<D>& v1, VFromD<D>& v2,
VFromD<D>& v3) {
const Repartition<uint64_t, decltype(d)> d64;
using V64 = VFromD<decltype(d64)>;
using V = VFromD<D>;
// 16 lanes per block; the lowest four blocks are at the bottom of vA..vD.
// Here int[i] means the four interleaved values of the i-th 4-tuple and
// int[3..0] indicates four consecutive 4-tuples (0 = least-significant).
V vA; // int[13..10] int[3..0]
V vB; // int[17..14] int[7..4]
V vC; // int[1b..18] int[b..8]
V vD; // int[1f..1c] int[f..c]
detail::LoadTransposedBlocks4(d, unaligned, vA, vB, vC, vD);
// For brevity, the comments only list the lower block (upper = lower + 0x10)
const V v5140 = InterleaveLower(d, vA, vB); // int[5,1,4,0]
const V vd9c8 = InterleaveLower(d, vC, vD); // int[d,9,c,8]
const V v7362 = InterleaveUpper(d, vA, vB); // int[7,3,6,2]
const V vfbea = InterleaveUpper(d, vC, vD); // int[f,b,e,a]
const V v6420 = InterleaveLower(d, v5140, v7362); // int[6,4,2,0]
const V veca8 = InterleaveLower(d, vd9c8, vfbea); // int[e,c,a,8]
const V v7531 = InterleaveUpper(d, v5140, v7362); // int[7,5,3,1]
const V vfdb9 = InterleaveUpper(d, vd9c8, vfbea); // int[f,d,b,9]
const V64 v10L = BitCast(d64, InterleaveLower(d, v6420, v7531)); // v10[7..0]
const V64 v10U = BitCast(d64, InterleaveLower(d, veca8, vfdb9)); // v10[f..8]
const V64 v32L = BitCast(d64, InterleaveUpper(d, v6420, v7531)); // v32[7..0]
const V64 v32U = BitCast(d64, InterleaveUpper(d, veca8, vfdb9)); // v32[f..8]
v0 = BitCast(d, InterleaveLower(d64, v10L, v10U));
v1 = BitCast(d, InterleaveUpper(d64, v10L, v10U));
v2 = BitCast(d, InterleaveLower(d64, v32L, v32U));
v3 = BitCast(d, InterleaveUpper(d64, v32L, v32U));
}
template <class D, HWY_IF_LANES_PER_BLOCK_D(D, 8)>
HWY_API void LoadInterleaved4(D d, const TFromD<D>* HWY_RESTRICT unaligned,
VFromD<D>& v0, VFromD<D>& v1, VFromD<D>& v2,
VFromD<D>& v3) {
// In the last step, we interleave by half of the block size, which is usually
// 8 bytes but half that for 8-bit x8 vectors.
using TW = hwy::UnsignedFromSize<d.MaxBytes() == 8 ? 4 : 8>;
const Repartition<TW, decltype(d)> dw;
using VW = VFromD<decltype(dw)>;
// (Comments are for 256-bit vectors.)
// 8 lanes per block; the lowest four blocks are at the bottom of vA..vD.
VFromD<D> vA; // v3210[9]v3210[8] v3210[1]v3210[0]
VFromD<D> vB; // v3210[b]v3210[a] v3210[3]v3210[2]
VFromD<D> vC; // v3210[d]v3210[c] v3210[5]v3210[4]
VFromD<D> vD; // v3210[f]v3210[e] v3210[7]v3210[6]
detail::LoadTransposedBlocks4(d, unaligned, vA, vB, vC, vD);
const VFromD<D> va820 = InterleaveLower(d, vA, vB); // v3210[a,8] v3210[2,0]
const VFromD<D> vec64 = InterleaveLower(d, vC, vD); // v3210[e,c] v3210[6,4]
const VFromD<D> vb931 = InterleaveUpper(d, vA, vB); // v3210[b,9] v3210[3,1]
const VFromD<D> vfd75 = InterleaveUpper(d, vC, vD); // v3210[f,d] v3210[7,5]
const VW v10_b830 = // v10[b..8] v10[3..0]
BitCast(dw, InterleaveLower(d, va820, vb931));
const VW v10_fc74 = // v10[f..c] v10[7..4]
BitCast(dw, InterleaveLower(d, vec64, vfd75));
const VW v32_b830 = // v32[b..8] v32[3..0]
BitCast(dw, InterleaveUpper(d, va820, vb931));
const VW v32_fc74 = // v32[f..c] v32[7..4]
BitCast(dw, InterleaveUpper(d, vec64, vfd75));
v0 = BitCast(d, InterleaveLower(dw, v10_b830, v10_fc74));
v1 = BitCast(d, InterleaveUpper(dw, v10_b830, v10_fc74));
v2 = BitCast(d, InterleaveLower(dw, v32_b830, v32_fc74));
v3 = BitCast(d, InterleaveUpper(dw, v32_b830, v32_fc74));
}
template <class D, HWY_IF_LANES_PER_BLOCK_D(D, 4)>
HWY_API void LoadInterleaved4(D d, const TFromD<D>* HWY_RESTRICT unaligned,
VFromD<D>& v0, VFromD<D>& v1, VFromD<D>& v2,
VFromD<D>& v3) {
using V = VFromD<D>;
V vA; // v3210[4] v3210[0]
V vB; // v3210[5] v3210[1]
V vC; // v3210[6] v3210[2]
V vD; // v3210[7] v3210[3]
detail::LoadTransposedBlocks4(d, unaligned, vA, vB, vC, vD);
const V v10e = InterleaveLower(d, vA, vC); // v1[6,4] v0[6,4] v1[2,0] v0[2,0]
const V v10o = InterleaveLower(d, vB, vD); // v1[7,5] v0[7,5] v1[3,1] v0[3,1]
const V v32e = InterleaveUpper(d, vA, vC); // v3[6,4] v2[6,4] v3[2,0] v2[2,0]
const V v32o = InterleaveUpper(d, vB, vD); // v3[7,5] v2[7,5] v3[3,1] v2[3,1]
v0 = InterleaveLower(d, v10e, v10o);
v1 = InterleaveUpper(d, v10e, v10o);
v2 = InterleaveLower(d, v32e, v32o);
v3 = InterleaveUpper(d, v32e, v32o);
}
template <class D, HWY_IF_LANES_PER_BLOCK_D(D, 2)>
HWY_API void LoadInterleaved4(D d, const TFromD<D>* HWY_RESTRICT unaligned,
VFromD<D>& v0, VFromD<D>& v1, VFromD<D>& v2,
VFromD<D>& v3) {
VFromD<D> vA, vB, vC, vD;
detail::LoadTransposedBlocks4(d, unaligned, vA, vB, vC, vD);
v0 = InterleaveLower(d, vA, vC);
v1 = InterleaveUpper(d, vA, vC);
v2 = InterleaveLower(d, vB, vD);
v3 = InterleaveUpper(d, vB, vD);
}
// Any T x1
template <class D, typename T = TFromD<D>, HWY_IF_LANES_D(D, 1)>
HWY_API void LoadInterleaved4(D d, const T* HWY_RESTRICT unaligned,
VFromD<D>& v0, VFromD<D>& v1, VFromD<D>& v2,
VFromD<D>& v3) {
v0 = LoadU(d, unaligned + 0);
v1 = LoadU(d, unaligned + 1);
v2 = LoadU(d, unaligned + 2);
v3 = LoadU(d, unaligned + 3);
}
// ------------------------------ StoreInterleaved2
namespace detail {
// Default for <= 128-bit vectors; x86_256 and x86_512 have their own overload.
template <class D, HWY_IF_V_SIZE_LE_D(D, 16)>
HWY_INLINE void StoreTransposedBlocks2(VFromD<D> A, VFromD<D> B, D d,
TFromD<D>* HWY_RESTRICT unaligned) {
constexpr size_t kN = MaxLanes(d);
StoreU(A, d, unaligned + 0 * kN);
StoreU(B, d, unaligned + 1 * kN);
}
} // namespace detail
// >= 128 bit vector
template <class D, HWY_IF_V_SIZE_GT_D(D, 8)>
HWY_API void StoreInterleaved2(VFromD<D> v0, VFromD<D> v1, D d,
TFromD<D>* HWY_RESTRICT unaligned) {
const auto v10L = InterleaveLower(d, v0, v1); // .. v1[0] v0[0]
const auto v10U = InterleaveUpper(d, v0, v1); // .. v1[kN/2] v0[kN/2]
detail::StoreTransposedBlocks2(v10L, v10U, d, unaligned);
}
// <= 64 bits
template <class V, class D, HWY_IF_V_SIZE_LE_D(D, 8)>
HWY_API void StoreInterleaved2(V part0, V part1, D d,
TFromD<D>* HWY_RESTRICT unaligned) {
const Twice<decltype(d)> d2;
const auto v0 = ZeroExtendVector(d2, part0);
const auto v1 = ZeroExtendVector(d2, part1);
const auto v10 = InterleaveLower(d2, v0, v1);
StoreU(v10, d2, unaligned);
}
// ------------------------------ StoreInterleaved3 (CombineShiftRightBytes,
// TableLookupBytes)
namespace detail {
// Default for <= 128-bit vectors; x86_256 and x86_512 have their own overload.
template <class D, HWY_IF_V_SIZE_LE_D(D, 16)>
HWY_INLINE void StoreTransposedBlocks3(VFromD<D> A, VFromD<D> B, VFromD<D> C,
D d, TFromD<D>* HWY_RESTRICT unaligned) {
constexpr size_t kN = MaxLanes(d);
StoreU(A, d, unaligned + 0 * kN);
StoreU(B, d, unaligned + 1 * kN);
StoreU(C, d, unaligned + 2 * kN);
}
} // namespace detail
// >= 128-bit vector, 8-bit lanes
template <class D, HWY_IF_T_SIZE_D(D, 1), HWY_IF_V_SIZE_GT_D(D, 8)>
HWY_API void StoreInterleaved3(VFromD<D> v0, VFromD<D> v1, VFromD<D> v2, D d,
TFromD<D>* HWY_RESTRICT unaligned) {
const RebindToUnsigned<decltype(d)> du;
using TU = TFromD<decltype(du)>;
const auto k5 = Set(du, TU{5});
const auto k6 = Set(du, TU{6});
// Interleave (v0,v1,v2) to (MSB on left, lane 0 on right):
// v0[5], v2[4],v1[4],v0[4] .. v2[0],v1[0],v0[0]. We're expanding v0 lanes
// to their place, with 0x80 so lanes to be filled from other vectors are 0
// to enable blending by ORing together.
alignas(16) static constexpr uint8_t tbl_v0[16] = {
0, 0x80, 0x80, 1, 0x80, 0x80, 2, 0x80, 0x80, //
3, 0x80, 0x80, 4, 0x80, 0x80, 5};
alignas(16) static constexpr uint8_t tbl_v1[16] = {
0x80, 0, 0x80, 0x80, 1, 0x80, //
0x80, 2, 0x80, 0x80, 3, 0x80, 0x80, 4, 0x80, 0x80};
// The interleaved vectors will be named A, B, C; temporaries with suffix
// 0..2 indicate which input vector's lanes they hold.
const auto shuf_A0 = LoadDup128(du, tbl_v0);
const auto shuf_A1 = LoadDup128(du, tbl_v1); // cannot reuse shuf_A0 (has 5)
const auto shuf_A2 = CombineShiftRightBytes<15>(du, shuf_A1, shuf_A1);
const auto A0 = TableLookupBytesOr0(v0, shuf_A0); // 5..4..3..2..1..0
const auto A1 = TableLookupBytesOr0(v1, shuf_A1); // ..4..3..2..1..0.
const auto A2 = TableLookupBytesOr0(v2, shuf_A2); // .4..3..2..1..0..
const VFromD<D> A = BitCast(d, A0 | A1 | A2);
// B: v1[10],v0[10], v2[9],v1[9],v0[9] .. , v2[6],v1[6],v0[6], v2[5],v1[5]
const auto shuf_B0 = shuf_A2 + k6; // .A..9..8..7..6..
const auto shuf_B1 = shuf_A0 + k5; // A..9..8..7..6..5
const auto shuf_B2 = shuf_A1 + k5; // ..9..8..7..6..5.
const auto B0 = TableLookupBytesOr0(v0, shuf_B0);
const auto B1 = TableLookupBytesOr0(v1, shuf_B1);
const auto B2 = TableLookupBytesOr0(v2, shuf_B2);
const VFromD<D> B = BitCast(d, B0 | B1 | B2);
// C: v2[15],v1[15],v0[15], v2[11],v1[11],v0[11], v2[10]
const auto shuf_C0 = shuf_B2 + k6; // ..F..E..D..C..B.
const auto shuf_C1 = shuf_B0 + k5; // .F..E..D..C..B..
const auto shuf_C2 = shuf_B1 + k5; // F..E..D..C..B..A
const auto C0 = TableLookupBytesOr0(v0, shuf_C0);
const auto C1 = TableLookupBytesOr0(v1, shuf_C1);
const auto C2 = TableLookupBytesOr0(v2, shuf_C2);
const VFromD<D> C = BitCast(d, C0 | C1 | C2);
detail::StoreTransposedBlocks3(A, B, C, d, unaligned);
}
// >= 128-bit vector, 16-bit lanes
template <class D, HWY_IF_T_SIZE_D(D, 2), HWY_IF_V_SIZE_GT_D(D, 8)>
HWY_API void StoreInterleaved3(VFromD<D> v0, VFromD<D> v1, VFromD<D> v2, D d,
TFromD<D>* HWY_RESTRICT unaligned) {
const Repartition<uint8_t, decltype(d)> du8;
const auto k2 = Set(du8, uint8_t{2 * sizeof(TFromD<D>)});
const auto k3 = Set(du8, uint8_t{3 * sizeof(TFromD<D>)});
// Interleave (v0,v1,v2) to (MSB on left, lane 0 on right):
// v1[2],v0[2], v2[1],v1[1],v0[1], v2[0],v1[0],v0[0]. 0x80 so lanes to be
// filled from other vectors are 0 for blending. Note that these are byte
// indices for 16-bit lanes.
alignas(16) static constexpr uint8_t tbl_v1[16] = {
0x80, 0x80, 0, 1, 0x80, 0x80, 0x80, 0x80,
2, 3, 0x80, 0x80, 0x80, 0x80, 4, 5};
alignas(16) static constexpr uint8_t tbl_v2[16] = {
0x80, 0x80, 0x80, 0x80, 0, 1, 0x80, 0x80,
0x80, 0x80, 2, 3, 0x80, 0x80, 0x80, 0x80};
// The interleaved vectors will be named A, B, C; temporaries with suffix
// 0..2 indicate which input vector's lanes they hold.
const auto shuf_A1 = LoadDup128(du8, tbl_v1); // 2..1..0.
// .2..1..0
const auto shuf_A0 = CombineShiftRightBytes<2>(du8, shuf_A1, shuf_A1);
const auto shuf_A2 = LoadDup128(du8, tbl_v2); // ..1..0..
const auto A0 = TableLookupBytesOr0(v0, shuf_A0);
const auto A1 = TableLookupBytesOr0(v1, shuf_A1);
const auto A2 = TableLookupBytesOr0(v2, shuf_A2);
const VFromD<D> A = BitCast(d, A0 | A1 | A2);
// B: v0[5] v2[4],v1[4],v0[4], v2[3],v1[3],v0[3], v2[2]
const auto shuf_B0 = shuf_A1 + k3; // 5..4..3.
const auto shuf_B1 = shuf_A2 + k3; // ..4..3..
const auto shuf_B2 = shuf_A0 + k2; // .4..3..2
const auto B0 = TableLookupBytesOr0(v0, shuf_B0);
const auto B1 = TableLookupBytesOr0(v1, shuf_B1);
const auto B2 = TableLookupBytesOr0(v2, shuf_B2);
const VFromD<D> B = BitCast(d, B0 | B1 | B2);
// C: v2[7],v1[7],v0[7], v2[6],v1[6],v0[6], v2[5],v1[5]
const auto shuf_C0 = shuf_B1 + k3; // ..7..6..
const auto shuf_C1 = shuf_B2 + k3; // .7..6..5
const auto shuf_C2 = shuf_B0 + k2; // 7..6..5.
const auto C0 = TableLookupBytesOr0(v0, shuf_C0);
const auto C1 = TableLookupBytesOr0(v1, shuf_C1);
const auto C2 = TableLookupBytesOr0(v2, shuf_C2);
const VFromD<D> C = BitCast(d, C0 | C1 | C2);
detail::StoreTransposedBlocks3(A, B, C, d, unaligned);
}
// >= 128-bit vector, 32-bit lanes
template <class D, HWY_IF_T_SIZE_D(D, 4), HWY_IF_V_SIZE_GT_D(D, 8)>
HWY_API void StoreInterleaved3(VFromD<D> v0, VFromD<D> v1, VFromD<D> v2, D d,
TFromD<D>* HWY_RESTRICT unaligned) {
const RepartitionToWide<decltype(d)> dw;
const VFromD<D> v10_v00 = InterleaveLower(d, v0, v1);
const VFromD<D> v01_v20 = OddEven(v0, v2);
// A: v0[1], v2[0],v1[0],v0[0] (<- lane 0)
const VFromD<D> A = BitCast(
d, InterleaveLower(dw, BitCast(dw, v10_v00), BitCast(dw, v01_v20)));
const VFromD<D> v1_321 = ShiftRightLanes<1>(d, v1);
const VFromD<D> v0_32 = ShiftRightLanes<2>(d, v0);
const VFromD<D> v21_v11 = OddEven(v2, v1_321);
const VFromD<D> v12_v02 = OddEven(v1_321, v0_32);
// B: v1[2],v0[2], v2[1],v1[1]
const VFromD<D> B = BitCast(
d, InterleaveLower(dw, BitCast(dw, v21_v11), BitCast(dw, v12_v02)));
// Notation refers to the upper 2 lanes of the vector for InterleaveUpper.
const VFromD<D> v23_v13 = OddEven(v2, v1_321);
const VFromD<D> v03_v22 = OddEven(v0, v2);
// C: v2[3],v1[3],v0[3], v2[2]
const VFromD<D> C = BitCast(
d, InterleaveUpper(dw, BitCast(dw, v03_v22), BitCast(dw, v23_v13)));
detail::StoreTransposedBlocks3(A, B, C, d, unaligned);
}
// >= 128-bit vector, 64-bit lanes
template <class D, HWY_IF_T_SIZE_D(D, 8), HWY_IF_V_SIZE_GT_D(D, 8)>
HWY_API void StoreInterleaved3(VFromD<D> v0, VFromD<D> v1, VFromD<D> v2, D d,
TFromD<D>* HWY_RESTRICT unaligned) {
const VFromD<D> A = InterleaveLower(d, v0, v1);
const VFromD<D> B = OddEven(v0, v2);
const VFromD<D> C = InterleaveUpper(d, v1, v2);
detail::StoreTransposedBlocks3(A, B, C, d, unaligned);
}
// 64-bit vector, 8-bit lanes
template <class D, HWY_IF_T_SIZE_D(D, 1), HWY_IF_V_SIZE_D(D, 8)>
HWY_API void StoreInterleaved3(VFromD<D> part0, VFromD<D> part1,
VFromD<D> part2, D d,
TFromD<D>* HWY_RESTRICT unaligned) {
// Use full vectors for the shuffles and first result.
constexpr size_t kFullN = 16 / sizeof(TFromD<D>);
const Full128<uint8_t> du;
const Full128<TFromD<D>> d_full;
const auto k5 = Set(du, uint8_t{5});
const auto k6 = Set(du, uint8_t{6});
const VFromD<decltype(d_full)> v0{part0.raw};
const VFromD<decltype(d_full)> v1{part1.raw};
const VFromD<decltype(d_full)> v2{part2.raw};
// Interleave (v0,v1,v2) to (MSB on left, lane 0 on right):
// v1[2],v0[2], v2[1],v1[1],v0[1], v2[0],v1[0],v0[0]. 0x80 so lanes to be
// filled from other vectors are 0 for blending.
alignas(16) static constexpr uint8_t tbl_v0[16] = {
0, 0x80, 0x80, 1, 0x80, 0x80, 2, 0x80, 0x80, //
3, 0x80, 0x80, 4, 0x80, 0x80, 5};
alignas(16) static constexpr uint8_t tbl_v1[16] = {
0x80, 0, 0x80, 0x80, 1, 0x80, //
0x80, 2, 0x80, 0x80, 3, 0x80, 0x80, 4, 0x80, 0x80};
// The interleaved vectors will be named A, B, C; temporaries with suffix
// 0..2 indicate which input vector's lanes they hold.
const auto shuf_A0 = Load(du, tbl_v0);
const auto shuf_A1 = Load(du, tbl_v1); // cannot reuse shuf_A0 (5 in MSB)
const auto shuf_A2 = CombineShiftRightBytes<15>(du, shuf_A1, shuf_A1);
const auto A0 = TableLookupBytesOr0(v0, shuf_A0); // 5..4..3..2..1..0
const auto A1 = TableLookupBytesOr0(v1, shuf_A1); // ..4..3..2..1..0.
const auto A2 = TableLookupBytesOr0(v2, shuf_A2); // .4..3..2..1..0..
const auto A = BitCast(d_full, A0 | A1 | A2);
StoreU(A, d_full, unaligned + 0 * kFullN);
// Second (HALF) vector: v2[7],v1[7],v0[7], v2[6],v1[6],v0[6], v2[5],v1[5]
const auto shuf_B0 = shuf_A2 + k6; // ..7..6..
const auto shuf_B1 = shuf_A0 + k5; // .7..6..5
const auto shuf_B2 = shuf_A1 + k5; // 7..6..5.
const auto B0 = TableLookupBytesOr0(v0, shuf_B0);
const auto B1 = TableLookupBytesOr0(v1, shuf_B1);
const auto B2 = TableLookupBytesOr0(v2, shuf_B2);
const VFromD<D> B{BitCast(d_full, B0 | B1 | B2).raw};
StoreU(B, d, unaligned + 1 * kFullN);
}
// 64-bit vector, 16-bit lanes
template <class D, HWY_IF_T_SIZE_D(D, 2), HWY_IF_LANES_D(D, 4)>
HWY_API void StoreInterleaved3(VFromD<D> part0, VFromD<D> part1,
VFromD<D> part2, D dh,
TFromD<D>* HWY_RESTRICT unaligned) {
const Twice<D> d_full;
const Full128<uint8_t> du8;
const auto k2 = Set(du8, uint8_t{2 * sizeof(TFromD<D>)});
const auto k3 = Set(du8, uint8_t{3 * sizeof(TFromD<D>)});
const VFromD<decltype(d_full)> v0{part0.raw};
const VFromD<decltype(d_full)> v1{part1.raw};
const VFromD<decltype(d_full)> v2{part2.raw};
// Interleave part (v0,v1,v2) to full (MSB on left, lane 0 on right):
// v1[2],v0[2], v2[1],v1[1],v0[1], v2[0],v1[0],v0[0]. We're expanding v0 lanes
// to their place, with 0x80 so lanes to be filled from other vectors are 0
// to enable blending by ORing together.
alignas(16) static constexpr uint8_t tbl_v1[16] = {
0x80, 0x80, 0, 1, 0x80, 0x80, 0x80, 0x80,
2, 3, 0x80, 0x80, 0x80, 0x80, 4, 5};
alignas(16) static constexpr uint8_t tbl_v2[16] = {
0x80, 0x80, 0x80, 0x80, 0, 1, 0x80, 0x80,
0x80, 0x80, 2, 3, 0x80, 0x80, 0x80, 0x80};
// The interleaved vectors will be named A, B; temporaries with suffix
// 0..2 indicate which input vector's lanes they hold.
const auto shuf_A1 = Load(du8, tbl_v1); // 2..1..0.
// .2..1..0
const auto shuf_A0 = CombineShiftRightBytes<2>(du8, shuf_A1, shuf_A1);
const auto shuf_A2 = Load(du8, tbl_v2); // ..1..0..
const auto A0 = TableLookupBytesOr0(v0, shuf_A0);
const auto A1 = TableLookupBytesOr0(v1, shuf_A1);
const auto A2 = TableLookupBytesOr0(v2, shuf_A2);
const VFromD<decltype(d_full)> A = BitCast(d_full, A0 | A1 | A2);
StoreU(A, d_full, unaligned);
// Second (HALF) vector: v2[3],v1[3],v0[3], v2[2]
const auto shuf_B0 = shuf_A1 + k3; // ..3.
const auto shuf_B1 = shuf_A2 + k3; // .3..
const auto shuf_B2 = shuf_A0 + k2; // 3..2
const auto B0 = TableLookupBytesOr0(v0, shuf_B0);
const auto B1 = TableLookupBytesOr0(v1, shuf_B1);
const auto B2 = TableLookupBytesOr0(v2, shuf_B2);
const VFromD<decltype(d_full)> B = BitCast(d_full, B0 | B1 | B2);
StoreU(VFromD<D>{B.raw}, dh, unaligned + MaxLanes(d_full));
}
// 64-bit vector, 32-bit lanes
template <class D, HWY_IF_T_SIZE_D(D, 4), HWY_IF_LANES_D(D, 2)>
HWY_API void StoreInterleaved3(VFromD<D> v0, VFromD<D> v1, VFromD<D> v2, D d,
TFromD<D>* HWY_RESTRICT unaligned) {
// (same code as 128-bit vector, 64-bit lanes)
const VFromD<D> v10_v00 = InterleaveLower(d, v0, v1);
const VFromD<D> v01_v20 = OddEven(v0, v2);
const VFromD<D> v21_v11 = InterleaveUpper(d, v1, v2);
constexpr size_t kN = MaxLanes(d);
StoreU(v10_v00, d, unaligned + 0 * kN);
StoreU(v01_v20, d, unaligned + 1 * kN);
StoreU(v21_v11, d, unaligned + 2 * kN);
}
// 64-bit lanes are handled by the N=1 case below.
// <= 32-bit vector, 8-bit lanes
template <class D, HWY_IF_T_SIZE_D(D, 1), HWY_IF_V_SIZE_LE_D(D, 4),
HWY_IF_LANES_GT_D(D, 1)>
HWY_API void StoreInterleaved3(VFromD<D> part0, VFromD<D> part1,
VFromD<D> part2, D d,
TFromD<D>* HWY_RESTRICT unaligned) {
// Use full vectors for the shuffles and result.
const Full128<uint8_t> du;
const Full128<TFromD<D>> d_full;
const VFromD<decltype(d_full)> v0{part0.raw};
const VFromD<decltype(d_full)> v1{part1.raw};
const VFromD<decltype(d_full)> v2{part2.raw};
// Interleave (v0,v1,v2). We're expanding v0 lanes to their place, with 0x80
// so lanes to be filled from other vectors are 0 to enable blending by ORing
// together.
alignas(16) static constexpr uint8_t tbl_v0[16] = {
0, 0x80, 0x80, 1, 0x80, 0x80, 2, 0x80,
0x80, 3, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80};
// The interleaved vector will be named A; temporaries with suffix
// 0..2 indicate which input vector's lanes they hold.
const auto shuf_A0 = Load(du, tbl_v0);
const auto shuf_A1 = CombineShiftRightBytes<15>(du, shuf_A0, shuf_A0);
const auto shuf_A2 = CombineShiftRightBytes<14>(du, shuf_A0, shuf_A0);
const auto A0 = TableLookupBytesOr0(v0, shuf_A0); // ......3..2..1..0
const auto A1 = TableLookupBytesOr0(v1, shuf_A1); // .....3..2..1..0.
const auto A2 = TableLookupBytesOr0(v2, shuf_A2); // ....3..2..1..0..
const VFromD<decltype(d_full)> A = BitCast(d_full, A0 | A1 | A2);
alignas(16) TFromD<D> buf[MaxLanes(d_full)];
StoreU(A, d_full, buf);
CopyBytes<d.MaxBytes() * 3>(buf, unaligned);
}
// 32-bit vector, 16-bit lanes
template <class D, HWY_IF_T_SIZE_D(D, 2), HWY_IF_LANES_D(D, 2)>
HWY_API void StoreInterleaved3(VFromD<D> part0, VFromD<D> part1,
VFromD<D> part2, D d,
TFromD<D>* HWY_RESTRICT unaligned) {
// Use full vectors for the shuffles and result.
const Full128<uint8_t> du8;
const Full128<TFromD<D>> d_full;
const VFromD<decltype(d_full)> v0{part0.raw};
const VFromD<decltype(d_full)> v1{part1.raw};
const VFromD<decltype(d_full)> v2{part2.raw};
// Interleave (v0,v1,v2). We're expanding v0 lanes to their place, with 0x80
// so lanes to be filled from other vectors are 0 to enable blending by ORing
// together.
alignas(16) static constexpr uint8_t tbl_v2[16] = {
0x80, 0x80, 0x80, 0x80, 0, 1, 0x80, 0x80,
0x80, 0x80, 2, 3, 0x80, 0x80, 0x80, 0x80};
// The interleaved vector will be named A; temporaries with suffix
// 0..2 indicate which input vector's lanes they hold.
const auto shuf_A2 = // ..1..0..
Load(du8, tbl_v2);
const auto shuf_A1 = // ...1..0.
CombineShiftRightBytes<2>(du8, shuf_A2, shuf_A2);
const auto shuf_A0 = // ....1..0
CombineShiftRightBytes<4>(du8, shuf_A2, shuf_A2);
const auto A0 = TableLookupBytesOr0(v0, shuf_A0); // ..1..0
const auto A1 = TableLookupBytesOr0(v1, shuf_A1); // .1..0.
const auto A2 = TableLookupBytesOr0(v2, shuf_A2); // 1..0..
const auto A = BitCast(d_full, A0 | A1 | A2);
alignas(16) TFromD<D> buf[MaxLanes(d_full)];
StoreU(A, d_full, buf);
CopyBytes<d.MaxBytes() * 3>(buf, unaligned);
}
// Single-element vector, any lane size: just store directly
template <class D, HWY_IF_LANES_D(D, 1)>
HWY_API void StoreInterleaved3(VFromD<D> v0, VFromD<D> v1, VFromD<D> v2, D d,
TFromD<D>* HWY_RESTRICT unaligned) {
StoreU(v0, d, unaligned + 0);
StoreU(v1, d, unaligned + 1);
StoreU(v2, d, unaligned + 2);
}
// ------------------------------ StoreInterleaved4
namespace detail {
// Default for <= 128-bit vectors; x86_256 and x86_512 have their own overload.
template <class D, HWY_IF_V_SIZE_LE_D(D, 16)>
HWY_INLINE void StoreTransposedBlocks4(VFromD<D> vA, VFromD<D> vB, VFromD<D> vC,
VFromD<D> vD, D d,
TFromD<D>* HWY_RESTRICT unaligned) {
constexpr size_t kN = MaxLanes(d);
StoreU(vA, d, unaligned + 0 * kN);
StoreU(vB, d, unaligned + 1 * kN);
StoreU(vC, d, unaligned + 2 * kN);
StoreU(vD, d, unaligned + 3 * kN);
}
} // namespace detail
// >= 128-bit vector, 8..32-bit lanes
template <class D, HWY_IF_NOT_T_SIZE_D(D, 8), HWY_IF_V_SIZE_GT_D(D, 8)>
HWY_API void StoreInterleaved4(VFromD<D> v0, VFromD<D> v1, VFromD<D> v2,
VFromD<D> v3, D d,
TFromD<D>* HWY_RESTRICT unaligned) {
const RepartitionToWide<decltype(d)> dw;
const auto v10L = ZipLower(dw, v0, v1); // .. v1[0] v0[0]
const auto v32L = ZipLower(dw, v2, v3);
const auto v10U = ZipUpper(dw, v0, v1);
const auto v32U = ZipUpper(dw, v2, v3);
// The interleaved vectors are vA, vB, vC, vD.
const VFromD<D> vA = BitCast(d, InterleaveLower(dw, v10L, v32L)); // 3210
const VFromD<D> vB = BitCast(d, InterleaveUpper(dw, v10L, v32L));
const VFromD<D> vC = BitCast(d, InterleaveLower(dw, v10U, v32U));
const VFromD<D> vD = BitCast(d, InterleaveUpper(dw, v10U, v32U));
detail::StoreTransposedBlocks4(vA, vB, vC, vD, d, unaligned);
}
// >= 128-bit vector, 64-bit lanes
template <class D, HWY_IF_T_SIZE_D(D, 8), HWY_IF_V_SIZE_GT_D(D, 8)>
HWY_API void StoreInterleaved4(VFromD<D> v0, VFromD<D> v1, VFromD<D> v2,
VFromD<D> v3, D d,
TFromD<D>* HWY_RESTRICT unaligned) {
// The interleaved vectors are vA, vB, vC, vD.
const VFromD<D> vA = InterleaveLower(d, v0, v1); // v1[0] v0[0]
const VFromD<D> vB = InterleaveLower(d, v2, v3);
const VFromD<D> vC = InterleaveUpper(d, v0, v1);
const VFromD<D> vD = InterleaveUpper(d, v2, v3);
detail::StoreTransposedBlocks4(vA, vB, vC, vD, d, unaligned);
}
// 64-bit vector, 8..32-bit lanes
template <class D, HWY_IF_NOT_T_SIZE_D(D, 8), HWY_IF_V_SIZE_D(D, 8)>
HWY_API void StoreInterleaved4(VFromD<D> part0, VFromD<D> part1,
VFromD<D> part2, VFromD<D> part3, D /* tag */,
TFromD<D>* HWY_RESTRICT unaligned) {
// Use full vectors to reduce the number of stores.
const Full128<TFromD<D>> d_full;
const RepartitionToWide<decltype(d_full)> dw;
const VFromD<decltype(d_full)> v0{part0.raw};
const VFromD<decltype(d_full)> v1{part1.raw};
const VFromD<decltype(d_full)> v2{part2.raw};
const VFromD<decltype(d_full)> v3{part3.raw};
const auto v10 = ZipLower(dw, v0, v1); // v1[0] v0[0]
const auto v32 = ZipLower(dw, v2, v3);
const auto A = BitCast(d_full, InterleaveLower(dw, v10, v32));
const auto B = BitCast(d_full, InterleaveUpper(dw, v10, v32));
StoreU(A, d_full, unaligned);
StoreU(B, d_full, unaligned + MaxLanes(d_full));
}
// 64-bit vector, 64-bit lane
template <class D, HWY_IF_T_SIZE_D(D, 8), HWY_IF_LANES_D(D, 1)>
HWY_API void StoreInterleaved4(VFromD<D> part0, VFromD<D> part1,
VFromD<D> part2, VFromD<D> part3, D /* tag */,
TFromD<D>* HWY_RESTRICT unaligned) {
// Use full vectors to reduce the number of stores.
const Full128<TFromD<D>> d_full;
const VFromD<decltype(d_full)> v0{part0.raw};
const VFromD<decltype(d_full)> v1{part1.raw};
const VFromD<decltype(d_full)> v2{part2.raw};
const VFromD<decltype(d_full)> v3{part3.raw};
const auto A = InterleaveLower(d_full, v0, v1); // v1[0] v0[0]
const auto B = InterleaveLower(d_full, v2, v3);
StoreU(A, d_full, unaligned);
StoreU(B, d_full, unaligned + MaxLanes(d_full));
}
// <= 32-bit vectors
template <class D, HWY_IF_V_SIZE_LE_D(D, 4)>
HWY_API void StoreInterleaved4(VFromD<D> part0, VFromD<D> part1,
VFromD<D> part2, VFromD<D> part3, D d,
TFromD<D>* HWY_RESTRICT unaligned) {
// Use full vectors to reduce the number of stores.
const Full128<TFromD<D>> d_full;
const RepartitionToWide<decltype(d_full)> dw;
const VFromD<decltype(d_full)> v0{part0.raw};
const VFromD<decltype(d_full)> v1{part1.raw};
const VFromD<decltype(d_full)> v2{part2.raw};
const VFromD<decltype(d_full)> v3{part3.raw};
const auto v10 = ZipLower(dw, v0, v1); // .. v1[0] v0[0]
const auto v32 = ZipLower(dw, v2, v3);
const auto v3210 = BitCast(d_full, InterleaveLower(dw, v10, v32));
alignas(16) TFromD<D> buf[MaxLanes(d_full)];
StoreU(v3210, d_full, buf);
CopyBytes<d.MaxBytes() * 4>(buf, unaligned);
}
#endif // HWY_NATIVE_LOAD_STORE_INTERLEAVED
// ------------------------------ Integer AbsDiff and SumsOf8AbsDiff
#if (defined(HWY_NATIVE_INTEGER_ABS_DIFF) == defined(HWY_TARGET_TOGGLE))
#ifdef HWY_NATIVE_INTEGER_ABS_DIFF
#undef HWY_NATIVE_INTEGER_ABS_DIFF
#else
#define HWY_NATIVE_INTEGER_ABS_DIFF
#endif
template <class V, HWY_IF_NOT_FLOAT_NOR_SPECIAL_V(V)>
HWY_API V AbsDiff(V a, V b) {
return Sub(Max(a, b), Min(a, b));
}
#endif // HWY_NATIVE_INTEGER_ABS_DIFF
#if (defined(HWY_NATIVE_SUMS_OF_8_ABS_DIFF) == defined(HWY_TARGET_TOGGLE))
#ifdef HWY_NATIVE_SUMS_OF_8_ABS_DIFF
#undef HWY_NATIVE_SUMS_OF_8_ABS_DIFF
#else
#define HWY_NATIVE_SUMS_OF_8_ABS_DIFF
#endif
template <class V, HWY_IF_U8_D(DFromV<V>),
HWY_IF_V_SIZE_GT_D(DFromV<V>, (HWY_TARGET == HWY_SCALAR ? 0 : 4))>
HWY_API Vec<Repartition<uint64_t, DFromV<V>>> SumsOf8AbsDiff(V a, V b) {
return SumsOf8(AbsDiff(a, b));
}
#endif // HWY_NATIVE_SUMS_OF_8_ABS_DIFF
// ------------------------------ SaturatedAdd/SaturatedSub for UI32/UI64
#if (defined(HWY_NATIVE_I32_SATURATED_ADDSUB) == defined(HWY_TARGET_TOGGLE))
#ifdef HWY_NATIVE_I32_SATURATED_ADDSUB
#undef HWY_NATIVE_I32_SATURATED_ADDSUB
#else
#define HWY_NATIVE_I32_SATURATED_ADDSUB
#endif
template <class V, HWY_IF_I32_D(DFromV<V>)>
HWY_API V SaturatedAdd(V a, V b) {
const DFromV<decltype(a)> d;
const auto sum = Add(a, b);
const auto overflow_mask =
MaskFromVec(BroadcastSignBit(AndNot(Xor(a, b), Xor(a, sum))));
const auto overflow_result =
Xor(BroadcastSignBit(a), Set(d, LimitsMax<int32_t>()));
return IfThenElse(overflow_mask, overflow_result, sum);
}
template <class V, HWY_IF_I32_D(DFromV<V>)>
HWY_API V SaturatedSub(V a, V b) {
const DFromV<decltype(a)> d;
const auto diff = Sub(a, b);
const auto overflow_mask =
MaskFromVec(BroadcastSignBit(And(Xor(a, b), Xor(a, diff))));
const auto overflow_result =
Xor(BroadcastSignBit(a), Set(d, LimitsMax<int32_t>()));
return IfThenElse(overflow_mask, overflow_result, diff);
}
#endif // HWY_NATIVE_I32_SATURATED_ADDSUB
#if (defined(HWY_NATIVE_I64_SATURATED_ADDSUB) == defined(HWY_TARGET_TOGGLE))
#ifdef HWY_NATIVE_I64_SATURATED_ADDSUB
#undef HWY_NATIVE_I64_SATURATED_ADDSUB
#else
#define HWY_NATIVE_I64_SATURATED_ADDSUB
#endif
template <class V, HWY_IF_I64_D(DFromV<V>)>
HWY_API V SaturatedAdd(V a, V b) {
const DFromV<decltype(a)> d;
const auto sum = Add(a, b);
const auto overflow_mask =
MaskFromVec(BroadcastSignBit(AndNot(Xor(a, b), Xor(a, sum))));
const auto overflow_result =
Xor(BroadcastSignBit(a), Set(d, LimitsMax<int64_t>()));
return IfThenElse(overflow_mask, overflow_result, sum);
}
template <class V, HWY_IF_I64_D(DFromV<V>)>
HWY_API V SaturatedSub(V a, V b) {
const DFromV<decltype(a)> d;
const auto diff = Sub(a, b);
const auto overflow_mask =
MaskFromVec(BroadcastSignBit(And(Xor(a, b), Xor(a, diff))));
const auto overflow_result =
Xor(BroadcastSignBit(a), Set(d, LimitsMax<int64_t>()));
return IfThenElse(overflow_mask, overflow_result, diff);
}
#endif // HWY_NATIVE_I64_SATURATED_ADDSUB
#if (defined(HWY_NATIVE_U32_SATURATED_ADDSUB) == defined(HWY_TARGET_TOGGLE))
#ifdef HWY_NATIVE_U32_SATURATED_ADDSUB
#undef HWY_NATIVE_U32_SATURATED_ADDSUB
#else
#define HWY_NATIVE_U32_SATURATED_ADDSUB
#endif
template <class V, HWY_IF_U32_D(DFromV<V>)>
HWY_API V SaturatedAdd(V a, V b) {
return Add(a, Min(b, Not(a)));
}
template <class V, HWY_IF_U32_D(DFromV<V>)>
HWY_API V SaturatedSub(V a, V b) {
return Sub(a, Min(a, b));
}
#endif // HWY_NATIVE_U32_SATURATED_ADDSUB
#if (defined(HWY_NATIVE_U64_SATURATED_ADDSUB) == defined(HWY_TARGET_TOGGLE))
#ifdef HWY_NATIVE_U64_SATURATED_ADDSUB
#undef HWY_NATIVE_U64_SATURATED_ADDSUB
#else
#define HWY_NATIVE_U64_SATURATED_ADDSUB
#endif
template <class V, HWY_IF_U64_D(DFromV<V>)>
HWY_API V SaturatedAdd(V a, V b) {
return Add(a, Min(b, Not(a)));
}
template <class V, HWY_IF_U64_D(DFromV<V>)>
HWY_API V SaturatedSub(V a, V b) {
return Sub(a, Min(a, b));
}
#endif // HWY_NATIVE_U64_SATURATED_ADDSUB
// ------------------------------ Unsigned to signed demotions
template <class DN, HWY_IF_SIGNED_D(DN), class V, HWY_IF_UNSIGNED_V(V),
class V2 = VFromD<Rebind<TFromV<V>, DN>>,
hwy::EnableIf<(sizeof(TFromD<DN>) < sizeof(TFromV<V>))>* = nullptr,
HWY_IF_LANES_D(DFromV<V>, HWY_MAX_LANES_D(DFromV<V2>))>
HWY_API VFromD<DN> DemoteTo(DN dn, V v) {
const DFromV<decltype(v)> d;
const RebindToSigned<decltype(d)> di;
const RebindToUnsigned<decltype(dn)> dn_u;
// First, do a signed to signed demotion. This will convert any values
// that are greater than hwy::HighestValue<MakeSigned<TFromV<V>>>() to a
// negative value.
const auto i2i_demote_result = DemoteTo(dn, BitCast(di, v));
// Second, convert any negative values to hwy::HighestValue<TFromD<DN>>()
// using an unsigned Min operation.
const auto max_signed_val = Set(dn, hwy::HighestValue<TFromD<DN>>());
return BitCast(
dn, Min(BitCast(dn_u, i2i_demote_result), BitCast(dn_u, max_signed_val)));
}
#if HWY_TARGET != HWY_SCALAR || HWY_IDE
template <class DN, HWY_IF_SIGNED_D(DN), class V, HWY_IF_UNSIGNED_V(V),
class V2 = VFromD<Repartition<TFromV<V>, DN>>,
HWY_IF_T_SIZE_V(V, sizeof(TFromD<DN>) * 2),
HWY_IF_LANES_D(DFromV<V>, HWY_MAX_LANES_D(DFromV<V2>))>
HWY_API VFromD<DN> ReorderDemote2To(DN dn, V a, V b) {
const DFromV<decltype(a)> d;
const RebindToSigned<decltype(d)> di;
const RebindToUnsigned<decltype(dn)> dn_u;
// First, do a signed to signed demotion. This will convert any values
// that are greater than hwy::HighestValue<MakeSigned<TFromV<V>>>() to a
// negative value.
const auto i2i_demote_result =
ReorderDemote2To(dn, BitCast(di, a), BitCast(di, b));
// Second, convert any negative values to hwy::HighestValue<TFromD<DN>>()
// using an unsigned Min operation.
const auto max_signed_val = Set(dn, hwy::HighestValue<TFromD<DN>>());
return BitCast(
dn, Min(BitCast(dn_u, i2i_demote_result), BitCast(dn_u, max_signed_val)));
}
#endif
// ------------------------------ OrderedTruncate2To
#if HWY_IDE || \
(defined(HWY_NATIVE_ORDERED_TRUNCATE_2_TO) == defined(HWY_TARGET_TOGGLE))
#ifdef HWY_NATIVE_ORDERED_TRUNCATE_2_TO
#undef HWY_NATIVE_ORDERED_TRUNCATE_2_TO
#else
#define HWY_NATIVE_ORDERED_TRUNCATE_2_TO
#endif
// (Must come after HWY_TARGET_TOGGLE, else we don't reset it for scalar)
#if HWY_TARGET != HWY_SCALAR || HWY_IDE
template <class DN, HWY_IF_UNSIGNED_D(DN), class V, HWY_IF_UNSIGNED_V(V),
HWY_IF_T_SIZE_V(V, sizeof(TFromD<DN>) * 2),
HWY_IF_LANES_D(DFromV<VFromD<DN>>, HWY_MAX_LANES_D(DFromV<V>) * 2)>
HWY_API VFromD<DN> OrderedTruncate2To(DN dn, V a, V b) {
return ConcatEven(dn, BitCast(dn, b), BitCast(dn, a));
}
#endif // HWY_TARGET != HWY_SCALAR
#endif // HWY_NATIVE_ORDERED_TRUNCATE_2_TO
// -------------------- LeadingZeroCount, TrailingZeroCount, HighestSetBitIndex
#if (defined(HWY_NATIVE_LEADING_ZERO_COUNT) == defined(HWY_TARGET_TOGGLE))
#ifdef HWY_NATIVE_LEADING_ZERO_COUNT
#undef HWY_NATIVE_LEADING_ZERO_COUNT
#else
#define HWY_NATIVE_LEADING_ZERO_COUNT
#endif
namespace detail {
template <class D, HWY_IF_U32_D(D)>
HWY_INLINE VFromD<D> UIntToF32BiasedExp(D d, VFromD<D> v) {
const RebindToFloat<decltype(d)> df;
#if HWY_TARGET > HWY_AVX3 && HWY_TARGET <= HWY_SSE2
const RebindToSigned<decltype(d)> di;
const Repartition<int16_t, decltype(d)> di16;
// On SSE2/SSSE3/SSE4/AVX2, do an int32_t to float conversion, followed
// by a unsigned right shift of the uint32_t bit representation of the
// floating point values by 23, followed by an int16_t Min
// operation as we are only interested in the biased exponent that would
// result from a uint32_t to float conversion.
// An int32_t to float vector conversion is also much more efficient on
// SSE2/SSSE3/SSE4/AVX2 than an uint32_t vector to float vector conversion
// as an uint32_t vector to float vector conversion on SSE2/SSSE3/SSE4/AVX2
// requires multiple instructions whereas an int32_t to float vector
// conversion can be carried out using a single instruction on
// SSE2/SSSE3/SSE4/AVX2.
const auto f32_bits = BitCast(d, ConvertTo(df, BitCast(di, v)));
return BitCast(d, Min(BitCast(di16, ShiftRight<23>(f32_bits)),
BitCast(di16, Set(d, 158))));
#else
const auto f32_bits = BitCast(d, ConvertTo(df, v));
return BitCast(d, ShiftRight<23>(f32_bits));
#endif
}
template <class V, HWY_IF_U32_D(DFromV<V>)>
HWY_INLINE V I32RangeU32ToF32BiasedExp(V v) {
// I32RangeU32ToF32BiasedExp is similar to UIntToF32BiasedExp, but
// I32RangeU32ToF32BiasedExp assumes that v[i] is between 0 and 2147483647.
const DFromV<decltype(v)> d;
const RebindToFloat<decltype(d)> df;
#if HWY_TARGET > HWY_AVX3 && HWY_TARGET <= HWY_SSE2
const RebindToSigned<decltype(d)> d_src;
#else
const RebindToUnsigned<decltype(d)> d_src;
#endif
const auto f32_bits = BitCast(d, ConvertTo(df, BitCast(d_src, v)));
return ShiftRight<23>(f32_bits);
}
template <class D, HWY_IF_U16_D(D), HWY_IF_LANES_LE_D(D, HWY_MAX_BYTES / 4)>
HWY_INLINE VFromD<D> UIntToF32BiasedExp(D d, VFromD<D> v) {
const Rebind<uint32_t, decltype(d)> du32;
const auto f32_biased_exp_as_u32 =
I32RangeU32ToF32BiasedExp(PromoteTo(du32, v));
return TruncateTo(d, f32_biased_exp_as_u32);
}
#if HWY_TARGET != HWY_SCALAR
template <class D, HWY_IF_U16_D(D), HWY_IF_LANES_GT_D(D, HWY_MAX_BYTES / 4)>
HWY_INLINE VFromD<D> UIntToF32BiasedExp(D d, VFromD<D> v) {
const Half<decltype(d)> dh;
const Rebind<uint32_t, decltype(dh)> du32;
const auto lo_u32 = PromoteTo(du32, LowerHalf(dh, v));
const auto hi_u32 = PromoteTo(du32, UpperHalf(dh, v));
const auto lo_f32_biased_exp_as_u32 = I32RangeU32ToF32BiasedExp(lo_u32);
const auto hi_f32_biased_exp_as_u32 = I32RangeU32ToF32BiasedExp(hi_u32);
#if HWY_TARGET <= HWY_SSE2
const RebindToSigned<decltype(du32)> di32;
const RebindToSigned<decltype(d)> di;
return BitCast(d,
OrderedDemote2To(di, BitCast(di32, lo_f32_biased_exp_as_u32),
BitCast(di32, hi_f32_biased_exp_as_u32)));
#else
return OrderedTruncate2To(d, lo_f32_biased_exp_as_u32,
hi_f32_biased_exp_as_u32);
#endif
}
#endif // HWY_TARGET != HWY_SCALAR
template <class D, HWY_IF_U8_D(D), HWY_IF_LANES_LE_D(D, HWY_MAX_BYTES / 4)>
HWY_INLINE VFromD<D> UIntToF32BiasedExp(D d, VFromD<D> v) {
const Rebind<uint32_t, decltype(d)> du32;
const auto f32_biased_exp_as_u32 =
I32RangeU32ToF32BiasedExp(PromoteTo(du32, v));
return U8FromU32(f32_biased_exp_as_u32);
}
#if HWY_TARGET != HWY_SCALAR
template <class D, HWY_IF_U8_D(D), HWY_IF_LANES_GT_D(D, HWY_MAX_BYTES / 4),
HWY_IF_LANES_LE_D(D, HWY_MAX_BYTES / 2)>
HWY_INLINE VFromD<D> UIntToF32BiasedExp(D d, VFromD<D> v) {
const Half<decltype(d)> dh;
const Rebind<uint32_t, decltype(dh)> du32;
const Repartition<uint16_t, decltype(du32)> du16;
const auto lo_u32 = PromoteTo(du32, LowerHalf(dh, v));
const auto hi_u32 = PromoteTo(du32, UpperHalf(dh, v));
const auto lo_f32_biased_exp_as_u32 = I32RangeU32ToF32BiasedExp(lo_u32);
const auto hi_f32_biased_exp_as_u32 = I32RangeU32ToF32BiasedExp(hi_u32);
#if HWY_TARGET <= HWY_SSE2
const RebindToSigned<decltype(du32)> di32;
const RebindToSigned<decltype(du16)> di16;
const auto f32_biased_exp_as_i16 =
OrderedDemote2To(di16, BitCast(di32, lo_f32_biased_exp_as_u32),
BitCast(di32, hi_f32_biased_exp_as_u32));
return DemoteTo(d, f32_biased_exp_as_i16);
#else
const auto f32_biased_exp_as_u16 = OrderedTruncate2To(
du16, lo_f32_biased_exp_as_u32, hi_f32_biased_exp_as_u32);
return TruncateTo(d, f32_biased_exp_as_u16);
#endif
}
template <class D, HWY_IF_U8_D(D), HWY_IF_LANES_GT_D(D, HWY_MAX_BYTES / 2)>
HWY_INLINE VFromD<D> UIntToF32BiasedExp(D d, VFromD<D> v) {
const Half<decltype(d)> dh;
const Half<decltype(dh)> dq;
const Rebind<uint32_t, decltype(dq)> du32;
const Repartition<uint16_t, decltype(du32)> du16;
const auto lo_half = LowerHalf(dh, v);
const auto hi_half = UpperHalf(dh, v);
const auto u32_q0 = PromoteTo(du32, LowerHalf(dq, lo_half));
const auto u32_q1 = PromoteTo(du32, UpperHalf(dq, lo_half));
const auto u32_q2 = PromoteTo(du32, LowerHalf(dq, hi_half));
const auto u32_q3 = PromoteTo(du32, UpperHalf(dq, hi_half));
const auto f32_biased_exp_as_u32_q0 = I32RangeU32ToF32BiasedExp(u32_q0);
const auto f32_biased_exp_as_u32_q1 = I32RangeU32ToF32BiasedExp(u32_q1);
const auto f32_biased_exp_as_u32_q2 = I32RangeU32ToF32BiasedExp(u32_q2);
const auto f32_biased_exp_as_u32_q3 = I32RangeU32ToF32BiasedExp(u32_q3);
#if HWY_TARGET <= HWY_SSE2
const RebindToSigned<decltype(du32)> di32;
const RebindToSigned<decltype(du16)> di16;
const auto lo_f32_biased_exp_as_i16 =
OrderedDemote2To(di16, BitCast(di32, f32_biased_exp_as_u32_q0),
BitCast(di32, f32_biased_exp_as_u32_q1));
const auto hi_f32_biased_exp_as_i16 =
OrderedDemote2To(di16, BitCast(di32, f32_biased_exp_as_u32_q2),
BitCast(di32, f32_biased_exp_as_u32_q3));
return OrderedDemote2To(d, lo_f32_biased_exp_as_i16,
hi_f32_biased_exp_as_i16);
#else
const auto lo_f32_biased_exp_as_u16 = OrderedTruncate2To(
du16, f32_biased_exp_as_u32_q0, f32_biased_exp_as_u32_q1);
const auto hi_f32_biased_exp_as_u16 = OrderedTruncate2To(
du16, f32_biased_exp_as_u32_q2, f32_biased_exp_as_u32_q3);
return OrderedTruncate2To(d, lo_f32_biased_exp_as_u16,
hi_f32_biased_exp_as_u16);
#endif
}
#endif // HWY_TARGET != HWY_SCALAR
#if HWY_TARGET == HWY_SCALAR
template <class D>
using F32ExpLzcntMinMaxRepartition = RebindToUnsigned<D>;
#elif HWY_TARGET >= HWY_SSSE3 && HWY_TARGET <= HWY_SSE2
template <class D>
using F32ExpLzcntMinMaxRepartition = Repartition<uint8_t, D>;
#else
template <class D>
using F32ExpLzcntMinMaxRepartition =
Repartition<UnsignedFromSize<HWY_MIN(sizeof(TFromD<D>), 4)>, D>;
#endif
template <class V>
using F32ExpLzcntMinMaxCmpV = VFromD<F32ExpLzcntMinMaxRepartition<DFromV<V>>>;
template <class V>
HWY_INLINE F32ExpLzcntMinMaxCmpV<V> F32ExpLzcntMinMaxBitCast(V v) {
const DFromV<decltype(v)> d;
const F32ExpLzcntMinMaxRepartition<decltype(d)> d2;
return BitCast(d2, v);
}
template <class D, HWY_IF_U64_D(D)>
HWY_INLINE VFromD<D> UIntToF32BiasedExp(D d, VFromD<D> v) {
#if HWY_TARGET == HWY_SCALAR
const uint64_t u64_val = GetLane(v);
const float f32_val = static_cast<float>(u64_val);
uint32_t f32_bits;
CopySameSize(&f32_val, &f32_bits);
return Set(d, static_cast<uint64_t>(f32_bits >> 23));
#else
const Repartition<uint32_t, decltype(d)> du32;
const auto f32_biased_exp = UIntToF32BiasedExp(du32, BitCast(du32, v));
const auto f32_biased_exp_adj =
IfThenZeroElse(Eq(f32_biased_exp, Zero(du32)),
BitCast(du32, Set(d, 0x0000002000000000u)));
const auto adj_f32_biased_exp = Add(f32_biased_exp, f32_biased_exp_adj);
return ShiftRight<32>(BitCast(
d, Max(F32ExpLzcntMinMaxBitCast(adj_f32_biased_exp),
F32ExpLzcntMinMaxBitCast(Reverse2(du32, adj_f32_biased_exp)))));
#endif
}
template <class V, HWY_IF_UNSIGNED_V(V)>
HWY_INLINE V UIntToF32BiasedExp(V v) {
const DFromV<decltype(v)> d;
return UIntToF32BiasedExp(d, v);
}
template <class V, HWY_IF_UNSIGNED_V(V),
HWY_IF_T_SIZE_ONE_OF_V(V, (1 << 1) | (1 << 2))>
HWY_INLINE V NormalizeForUIntTruncConvToF32(V v) {
return v;
}
template <class V, HWY_IF_UNSIGNED_V(V),
HWY_IF_T_SIZE_ONE_OF_V(V, (1 << 4) | (1 << 8))>
HWY_INLINE V NormalizeForUIntTruncConvToF32(V v) {
// If v[i] >= 16777216 is true, make sure that the bit at
// HighestSetBitIndex(v[i]) - 24 is zeroed out to ensure that any inexact
// conversion to single-precision floating point is rounded down.
// This zeroing-out can be accomplished through the AndNot operation below.
return AndNot(ShiftRight<24>(v), v);
}
} // namespace detail
template <class V, HWY_IF_NOT_FLOAT_NOR_SPECIAL_V(V)>
HWY_API V HighestSetBitIndex(V v) {
const DFromV<decltype(v)> d;
const RebindToUnsigned<decltype(d)> du;
using TU = TFromD<decltype(du)>;
const auto f32_biased_exp = detail::UIntToF32BiasedExp(
detail::NormalizeForUIntTruncConvToF32(BitCast(du, v)));
return BitCast(d, Sub(f32_biased_exp, Set(du, TU{127})));
}
template <class V, HWY_IF_NOT_FLOAT_NOR_SPECIAL_V(V)>
HWY_API V LeadingZeroCount(V v) {
const DFromV<decltype(v)> d;
const RebindToUnsigned<decltype(d)> du;
using TU = TFromD<decltype(du)>;
constexpr TU kNumOfBitsInT{sizeof(TU) * 8};
const auto f32_biased_exp = detail::UIntToF32BiasedExp(
detail::NormalizeForUIntTruncConvToF32(BitCast(du, v)));
const auto lz_count = Sub(Set(du, TU{kNumOfBitsInT + 126}), f32_biased_exp);
return BitCast(d,
Min(detail::F32ExpLzcntMinMaxBitCast(lz_count),
detail::F32ExpLzcntMinMaxBitCast(Set(du, kNumOfBitsInT))));
}
template <class V, HWY_IF_NOT_FLOAT_NOR_SPECIAL_V(V)>
HWY_API V TrailingZeroCount(V v) {
const DFromV<decltype(v)> d;
const RebindToUnsigned<decltype(d)> du;
const RebindToSigned<decltype(d)> di;
using TU = TFromD<decltype(du)>;
const auto vi = BitCast(di, v);
const auto lowest_bit = BitCast(du, And(vi, Neg(vi)));
constexpr TU kNumOfBitsInT{sizeof(TU) * 8};
const auto f32_biased_exp = detail::UIntToF32BiasedExp(lowest_bit);
const auto tz_count = Sub(f32_biased_exp, Set(du, TU{127}));
return BitCast(d,
Min(detail::F32ExpLzcntMinMaxBitCast(tz_count),
detail::F32ExpLzcntMinMaxBitCast(Set(du, kNumOfBitsInT))));
}
#endif // HWY_NATIVE_LEADING_ZERO_COUNT
// ------------------------------ AESRound
// Cannot implement on scalar: need at least 16 bytes for TableLookupBytes.
#if HWY_TARGET != HWY_SCALAR || HWY_IDE
// Define for white-box testing, even if native instructions are available.
namespace detail {
// Constant-time: computes inverse in GF(2^4) based on "Accelerating AES with
// Vector Permute Instructions" and the accompanying assembly language
// implementation: https://crypto.stanford.edu/vpaes/vpaes.tgz. See also Botan:
// https://botan.randombit.net/doxygen/aes__vperm_8cpp_source.html .
//
// A brute-force 256 byte table lookup can also be made constant-time, and
// possibly competitive on NEON, but this is more performance-portable
// especially for x86 and large vectors.
template <class V> // u8
HWY_INLINE V SubBytesMulInverseAndAffineLookup(V state, V affine_tblL,
V affine_tblU) {
const DFromV<V> du;
const auto mask = Set(du, uint8_t{0xF});
// Change polynomial basis to GF(2^4)
{
alignas(16) static constexpr uint8_t basisL[16] = {
0x00, 0x70, 0x2A, 0x5A, 0x98, 0xE8, 0xB2, 0xC2,
0x08, 0x78, 0x22, 0x52, 0x90, 0xE0, 0xBA, 0xCA};
alignas(16) static constexpr uint8_t basisU[16] = {
0x00, 0x4D, 0x7C, 0x31, 0x7D, 0x30, 0x01, 0x4C,
0x81, 0xCC, 0xFD, 0xB0, 0xFC, 0xB1, 0x80, 0xCD};
const auto sL = And(state, mask);
const auto sU = ShiftRight<4>(state); // byte shift => upper bits are zero
const auto gf4L = TableLookupBytes(LoadDup128(du, basisL), sL);
const auto gf4U = TableLookupBytes(LoadDup128(du, basisU), sU);
state = Xor(gf4L, gf4U);
}
// Inversion in GF(2^4). Elements 0 represent "infinity" (division by 0) and
// cause TableLookupBytesOr0 to return 0.
alignas(16) static constexpr uint8_t kZetaInv[16] = {
0x80, 7, 11, 15, 6, 10, 4, 1, 9, 8, 5, 2, 12, 14, 13, 3};
alignas(16) static constexpr uint8_t kInv[16] = {
0x80, 1, 8, 13, 15, 6, 5, 14, 2, 12, 11, 10, 9, 3, 7, 4};
const auto tbl = LoadDup128(du, kInv);
const auto sL = And(state, mask); // L=low nibble, U=upper
const auto sU = ShiftRight<4>(state); // byte shift => upper bits are zero
const auto sX = Xor(sU, sL);
const auto invL = TableLookupBytes(LoadDup128(du, kZetaInv), sL);
const auto invU = TableLookupBytes(tbl, sU);
const auto invX = TableLookupBytes(tbl, sX);
const auto outL = Xor(sX, TableLookupBytesOr0(tbl, Xor(invL, invU)));
const auto outU = Xor(sU, TableLookupBytesOr0(tbl, Xor(invL, invX)));
const auto affL = TableLookupBytesOr0(affine_tblL, outL);
const auto affU = TableLookupBytesOr0(affine_tblU, outU);
return Xor(affL, affU);
}
template <class V> // u8
HWY_INLINE V SubBytes(V state) {
const DFromV<V> du;
// Linear skew (cannot bake 0x63 bias into the table because out* indices
// may have the infinity flag set).
alignas(16) static constexpr uint8_t kAffineL[16] = {
0x00, 0xC7, 0xBD, 0x6F, 0x17, 0x6D, 0xD2, 0xD0,
0x78, 0xA8, 0x02, 0xC5, 0x7A, 0xBF, 0xAA, 0x15};
alignas(16) static constexpr uint8_t kAffineU[16] = {
0x00, 0x6A, 0xBB, 0x5F, 0xA5, 0x74, 0xE4, 0xCF,
0xFA, 0x35, 0x2B, 0x41, 0xD1, 0x90, 0x1E, 0x8E};
return Xor(SubBytesMulInverseAndAffineLookup(state, LoadDup128(du, kAffineL),
LoadDup128(du, kAffineU)),
Set(du, uint8_t{0x63}));
}
template <class V> // u8
HWY_INLINE V InvSubBytes(V state) {
const DFromV<V> du;
alignas(16) static constexpr uint8_t kGF2P4InvToGF2P8InvL[16]{
0x00, 0x40, 0xF9, 0x7E, 0x53, 0xEA, 0x87, 0x13,
0x2D, 0x3E, 0x94, 0xD4, 0xB9, 0x6D, 0xAA, 0xC7};
alignas(16) static constexpr uint8_t kGF2P4InvToGF2P8InvU[16]{
0x00, 0x1D, 0x44, 0x93, 0x0F, 0x56, 0xD7, 0x12,
0x9C, 0x8E, 0xC5, 0xD8, 0x59, 0x81, 0x4B, 0xCA};
// Apply the inverse affine transformation
const auto b = Xor(Xor3(Or(ShiftLeft<1>(state), ShiftRight<7>(state)),
Or(ShiftLeft<3>(state), ShiftRight<5>(state)),
Or(ShiftLeft<6>(state), ShiftRight<2>(state))),
Set(du, uint8_t{0x05}));
// The GF(2^8) multiplicative inverse is computed as follows:
// - Changing the polynomial basis to GF(2^4)
// - Computing the GF(2^4) multiplicative inverse
// - Converting the GF(2^4) multiplicative inverse to the GF(2^8)
// multiplicative inverse through table lookups using the
// kGF2P4InvToGF2P8InvL and kGF2P4InvToGF2P8InvU tables
return SubBytesMulInverseAndAffineLookup(
b, LoadDup128(du, kGF2P4InvToGF2P8InvL),
LoadDup128(du, kGF2P4InvToGF2P8InvU));
}
} // namespace detail
#endif // HWY_TARGET != HWY_SCALAR
// "Include guard": skip if native AES instructions are available.
#if (defined(HWY_NATIVE_AES) == defined(HWY_TARGET_TOGGLE))
#ifdef HWY_NATIVE_AES
#undef HWY_NATIVE_AES
#else
#define HWY_NATIVE_AES
#endif
// (Must come after HWY_TARGET_TOGGLE, else we don't reset it for scalar)
#if HWY_TARGET != HWY_SCALAR
namespace detail {
template <class V> // u8
HWY_API V ShiftRows(const V state) {
const DFromV<V> du;
alignas(16) static constexpr uint8_t kShiftRow[16] = {
0, 5, 10, 15, // transposed: state is column major
4, 9, 14, 3, //
8, 13, 2, 7, //
12, 1, 6, 11};
const auto shift_row = LoadDup128(du, kShiftRow);
return TableLookupBytes(state, shift_row);
}
template <class V> // u8
HWY_API V InvShiftRows(const V state) {
const DFromV<V> du;
alignas(16) static constexpr uint8_t kShiftRow[16] = {
0, 13, 10, 7, // transposed: state is column major
4, 1, 14, 11, //
8, 5, 2, 15, //
12, 9, 6, 3};
const auto shift_row = LoadDup128(du, kShiftRow);
return TableLookupBytes(state, shift_row);
}
template <class V> // u8
HWY_API V GF2P8Mod11BMulBy2(V v) {
const DFromV<V> du;
const RebindToSigned<decltype(du)> di; // can only do signed comparisons
const auto msb = Lt(BitCast(di, v), Zero(di));
const auto overflow = BitCast(du, IfThenElseZero(msb, Set(di, int8_t{0x1B})));
return Xor(Add(v, v), overflow); // = v*2 in GF(2^8).
}
template <class V> // u8
HWY_API V MixColumns(const V state) {
const DFromV<V> du;
// For each column, the rows are the sum of GF(2^8) matrix multiplication by:
// 2 3 1 1 // Let s := state*1, d := state*2, t := state*3.
// 1 2 3 1 // d are on diagonal, no permutation needed.
// 1 1 2 3 // t1230 indicates column indices of threes for the 4 rows.
// 3 1 1 2 // We also need to compute s2301 and s3012 (=1230 o 2301).
alignas(16) static constexpr uint8_t k2301[16] = {
2, 3, 0, 1, 6, 7, 4, 5, 10, 11, 8, 9, 14, 15, 12, 13};
alignas(16) static constexpr uint8_t k1230[16] = {
1, 2, 3, 0, 5, 6, 7, 4, 9, 10, 11, 8, 13, 14, 15, 12};
const auto d = GF2P8Mod11BMulBy2(state); // = state*2 in GF(2^8).
const auto s2301 = TableLookupBytes(state, LoadDup128(du, k2301));
const auto d_s2301 = Xor(d, s2301);
const auto t_s2301 = Xor(state, d_s2301); // t(s*3) = XOR-sum {s, d(s*2)}
const auto t1230_s3012 = TableLookupBytes(t_s2301, LoadDup128(du, k1230));
return Xor(d_s2301, t1230_s3012); // XOR-sum of 4 terms
}
template <class V> // u8
HWY_API V InvMixColumns(const V state) {
const DFromV<V> du;
// For each column, the rows are the sum of GF(2^8) matrix multiplication by:
// 14 11 13 9
// 9 14 11 13
// 13 9 14 11
// 11 13 9 14
alignas(16) static constexpr uint8_t k2301[16] = {
2, 3, 0, 1, 6, 7, 4, 5, 10, 11, 8, 9, 14, 15, 12, 13};
alignas(16) static constexpr uint8_t k1230[16] = {
1, 2, 3, 0, 5, 6, 7, 4, 9, 10, 11, 8, 13, 14, 15, 12};
const auto v1230 = LoadDup128(du, k1230);
const auto sx2 = GF2P8Mod11BMulBy2(state); /* = state*2 in GF(2^8) */
const auto sx4 = GF2P8Mod11BMulBy2(sx2); /* = state*4 in GF(2^8) */
const auto sx8 = GF2P8Mod11BMulBy2(sx4); /* = state*8 in GF(2^8) */
const auto sx9 = Xor(sx8, state); /* = state*9 in GF(2^8) */
const auto sx11 = Xor(sx9, sx2); /* = state*11 in GF(2^8) */
const auto sx13 = Xor(sx9, sx4); /* = state*13 in GF(2^8) */
const auto sx14 = Xor3(sx8, sx4, sx2); /* = state*14 in GF(2^8) */
const auto sx13_0123_sx9_1230 = Xor(sx13, TableLookupBytes(sx9, v1230));
const auto sx14_0123_sx11_1230 = Xor(sx14, TableLookupBytes(sx11, v1230));
const auto sx13_2301_sx9_3012 =
TableLookupBytes(sx13_0123_sx9_1230, LoadDup128(du, k2301));
return Xor(sx14_0123_sx11_1230, sx13_2301_sx9_3012);
}
} // namespace detail
template <class V> // u8
HWY_API V AESRound(V state, const V round_key) {
// Intel docs swap the first two steps, but it does not matter because
// ShiftRows is a permutation and SubBytes is independent of lane index.
state = detail::SubBytes(state);
state = detail::ShiftRows(state);
state = detail::MixColumns(state);
state = Xor(state, round_key); // AddRoundKey
return state;
}
template <class V> // u8
HWY_API V AESLastRound(V state, const V round_key) {
// LIke AESRound, but without MixColumns.
state = detail::SubBytes(state);
state = detail::ShiftRows(state);
state = Xor(state, round_key); // AddRoundKey
return state;
}
template <class V>
HWY_API V AESInvMixColumns(V state) {
return detail::InvMixColumns(state);
}
template <class V> // u8
HWY_API V AESRoundInv(V state, const V round_key) {
state = detail::InvSubBytes(state);
state = detail::InvShiftRows(state);
state = detail::InvMixColumns(state);
state = Xor(state, round_key); // AddRoundKey
return state;
}
template <class V> // u8
HWY_API V AESLastRoundInv(V state, const V round_key) {
// Like AESRoundInv, but without InvMixColumns.
state = detail::InvSubBytes(state);
state = detail::InvShiftRows(state);
state = Xor(state, round_key); // AddRoundKey
return state;
}
template <uint8_t kRcon, class V, HWY_IF_U8_D(DFromV<V>)>
HWY_API V AESKeyGenAssist(V v) {
alignas(16) static constexpr uint8_t kRconXorMask[16] = {
0, 0, 0, 0, kRcon, 0, 0, 0, 0, 0, 0, 0, kRcon, 0, 0, 0};
alignas(16) static constexpr uint8_t kRotWordShuffle[16] = {
4, 5, 6, 7, 5, 6, 7, 4, 12, 13, 14, 15, 13, 14, 15, 12};
const DFromV<decltype(v)> d;
const auto sub_word_result = detail::SubBytes(v);
const auto rot_word_result =
TableLookupBytes(sub_word_result, LoadDup128(d, kRotWordShuffle));
return Xor(rot_word_result, LoadDup128(d, kRconXorMask));
}
// Constant-time implementation inspired by
// https://www.bearssl.org/constanttime.html, but about half the cost because we
// use 64x64 multiplies and 128-bit XORs.
template <class V>
HWY_API V CLMulLower(V a, V b) {
const DFromV<V> d;
static_assert(IsSame<TFromD<decltype(d)>, uint64_t>(), "V must be u64");
const auto k1 = Set(d, 0x1111111111111111ULL);
const auto k2 = Set(d, 0x2222222222222222ULL);
const auto k4 = Set(d, 0x4444444444444444ULL);
const auto k8 = Set(d, 0x8888888888888888ULL);
const auto a0 = And(a, k1);
const auto a1 = And(a, k2);
const auto a2 = And(a, k4);
const auto a3 = And(a, k8);
const auto b0 = And(b, k1);
const auto b1 = And(b, k2);
const auto b2 = And(b, k4);
const auto b3 = And(b, k8);
auto m0 = Xor(MulEven(a0, b0), MulEven(a1, b3));
auto m1 = Xor(MulEven(a0, b1), MulEven(a1, b0));
auto m2 = Xor(MulEven(a0, b2), MulEven(a1, b1));
auto m3 = Xor(MulEven(a0, b3), MulEven(a1, b2));
m0 = Xor(m0, Xor(MulEven(a2, b2), MulEven(a3, b1)));
m1 = Xor(m1, Xor(MulEven(a2, b3), MulEven(a3, b2)));
m2 = Xor(m2, Xor(MulEven(a2, b0), MulEven(a3, b3)));
m3 = Xor(m3, Xor(MulEven(a2, b1), MulEven(a3, b0)));
return Or(Or(And(m0, k1), And(m1, k2)), Or(And(m2, k4), And(m3, k8)));
}
template <class V>
HWY_API V CLMulUpper(V a, V b) {
const DFromV<V> d;
static_assert(IsSame<TFromD<decltype(d)>, uint64_t>(), "V must be u64");
const auto k1 = Set(d, 0x1111111111111111ULL);
const auto k2 = Set(d, 0x2222222222222222ULL);
const auto k4 = Set(d, 0x4444444444444444ULL);
const auto k8 = Set(d, 0x8888888888888888ULL);
const auto a0 = And(a, k1);
const auto a1 = And(a, k2);
const auto a2 = And(a, k4);
const auto a3 = And(a, k8);
const auto b0 = And(b, k1);
const auto b1 = And(b, k2);
const auto b2 = And(b, k4);
const auto b3 = And(b, k8);
auto m0 = Xor(MulOdd(a0, b0), MulOdd(a1, b3));
auto m1 = Xor(MulOdd(a0, b1), MulOdd(a1, b0));
auto m2 = Xor(MulOdd(a0, b2), MulOdd(a1, b1));
auto m3 = Xor(MulOdd(a0, b3), MulOdd(a1, b2));
m0 = Xor(m0, Xor(MulOdd(a2, b2), MulOdd(a3, b1)));
m1 = Xor(m1, Xor(MulOdd(a2, b3), MulOdd(a3, b2)));
m2 = Xor(m2, Xor(MulOdd(a2, b0), MulOdd(a3, b3)));
m3 = Xor(m3, Xor(MulOdd(a2, b1), MulOdd(a3, b0)));
return Or(Or(And(m0, k1), And(m1, k2)), Or(And(m2, k4), And(m3, k8)));
}
#endif // HWY_NATIVE_AES
#endif // HWY_TARGET != HWY_SCALAR
// ------------------------------ PopulationCount
// "Include guard": skip if native POPCNT-related instructions are available.
#if (defined(HWY_NATIVE_POPCNT) == defined(HWY_TARGET_TOGGLE))
#ifdef HWY_NATIVE_POPCNT
#undef HWY_NATIVE_POPCNT
#else
#define HWY_NATIVE_POPCNT
#endif
// This overload requires vectors to be at least 16 bytes, which is the case
// for LMUL >= 2.
#undef HWY_IF_POPCNT
#if HWY_TARGET == HWY_RVV
#define HWY_IF_POPCNT(D) \
hwy::EnableIf<D().Pow2() >= 1 && D().MaxLanes() >= 16>* = nullptr
#else
// Other targets only have these two overloads which are mutually exclusive, so
// no further conditions are required.
#define HWY_IF_POPCNT(D) void* = nullptr
#endif // HWY_TARGET == HWY_RVV
template <class V, class D = DFromV<V>, HWY_IF_U8_D(D),
HWY_IF_V_SIZE_GT_D(D, 8), HWY_IF_POPCNT(D)>
HWY_API V PopulationCount(V v) {
const D d;
HWY_ALIGN constexpr uint8_t kLookup[16] = {
0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4,
};
const auto lo = And(v, Set(d, uint8_t{0xF}));
const auto hi = ShiftRight<4>(v);
const auto lookup = LoadDup128(d, kLookup);
return Add(TableLookupBytes(lookup, hi), TableLookupBytes(lookup, lo));
}
// RVV has a specialization that avoids the Set().
#if HWY_TARGET != HWY_RVV
// Slower fallback for capped vectors.
template <class V, class D = DFromV<V>, HWY_IF_U8_D(D),
HWY_IF_V_SIZE_LE_D(D, 8)>
HWY_API V PopulationCount(V v) {
const D d;
// See https://arxiv.org/pdf/1611.07612.pdf, Figure 3
const V k33 = Set(d, uint8_t{0x33});
v = Sub(v, And(ShiftRight<1>(v), Set(d, uint8_t{0x55})));
v = Add(And(ShiftRight<2>(v), k33), And(v, k33));
return And(Add(v, ShiftRight<4>(v)), Set(d, uint8_t{0x0F}));
}
#endif // HWY_TARGET != HWY_RVV
template <class V, class D = DFromV<V>, HWY_IF_U16_D(D)>
HWY_API V PopulationCount(V v) {
const D d;
const Repartition<uint8_t, decltype(d)> d8;
const auto vals = BitCast(d, PopulationCount(BitCast(d8, v)));
return Add(ShiftRight<8>(vals), And(vals, Set(d, uint16_t{0xFF})));
}
template <class V, class D = DFromV<V>, HWY_IF_U32_D(D)>
HWY_API V PopulationCount(V v) {
const D d;
Repartition<uint16_t, decltype(d)> d16;
auto vals = BitCast(d, PopulationCount(BitCast(d16, v)));
return Add(ShiftRight<16>(vals), And(vals, Set(d, uint32_t{0xFF})));
}
#if HWY_HAVE_INTEGER64
template <class V, class D = DFromV<V>, HWY_IF_U64_D(D)>
HWY_API V PopulationCount(V v) {
const D d;
Repartition<uint32_t, decltype(d)> d32;
auto vals = BitCast(d, PopulationCount(BitCast(d32, v)));
return Add(ShiftRight<32>(vals), And(vals, Set(d, 0xFFULL)));
}
#endif
#endif // HWY_NATIVE_POPCNT
// ------------------------------ 8-bit multiplication
// "Include guard": skip if native 8-bit mul instructions are available.
#if (defined(HWY_NATIVE_MUL_8) == defined(HWY_TARGET_TOGGLE)) || HWY_IDE
#ifdef HWY_NATIVE_MUL_8
#undef HWY_NATIVE_MUL_8
#else
#define HWY_NATIVE_MUL_8
#endif
// 8 bit and fits in wider reg: promote
template <class V, HWY_IF_T_SIZE_V(V, 1),
HWY_IF_V_SIZE_LE_V(V, HWY_MAX_BYTES / 2)>
HWY_API V operator*(const V a, const V b) {
const DFromV<decltype(a)> d;
const Rebind<MakeWide<TFromV<V>>, decltype(d)> dw;
const RebindToUnsigned<decltype(d)> du; // TruncateTo result
const RebindToUnsigned<decltype(dw)> dwu; // TruncateTo input
const VFromD<decltype(dw)> mul = PromoteTo(dw, a) * PromoteTo(dw, b);
// TruncateTo is cheaper than ConcatEven.
return BitCast(d, TruncateTo(du, BitCast(dwu, mul)));
}
// 8 bit full reg: promote halves
template <class V, HWY_IF_T_SIZE_V(V, 1),
HWY_IF_V_SIZE_GT_V(V, HWY_MAX_BYTES / 2)>
HWY_API V operator*(const V a, const V b) {
const DFromV<decltype(a)> d;
const Half<decltype(d)> dh;
const Twice<RepartitionToWide<decltype(dh)>> dw;
const VFromD<decltype(dw)> a0 = PromoteTo(dw, LowerHalf(dh, a));
const VFromD<decltype(dw)> a1 = PromoteTo(dw, UpperHalf(dh, a));
const VFromD<decltype(dw)> b0 = PromoteTo(dw, LowerHalf(dh, b));
const VFromD<decltype(dw)> b1 = PromoteTo(dw, UpperHalf(dh, b));
const VFromD<decltype(dw)> m0 = a0 * b0;
const VFromD<decltype(dw)> m1 = a1 * b1;
return ConcatEven(d, BitCast(d, m1), BitCast(d, m0));
}
#endif // HWY_NATIVE_MUL_8
// ------------------------------ 64-bit multiplication
// "Include guard": skip if native 64-bit mul instructions are available.
#if (defined(HWY_NATIVE_MUL_64) == defined(HWY_TARGET_TOGGLE)) || HWY_IDE
#ifdef HWY_NATIVE_MUL_64
#undef HWY_NATIVE_MUL_64
#else
#define HWY_NATIVE_MUL_64
#endif
// Single-lane i64 or u64
template <class V, HWY_IF_T_SIZE_V(V, 8), HWY_IF_V_SIZE_V(V, 8),
HWY_IF_NOT_FLOAT_V(V)>
HWY_API V operator*(V x, V y) {
const DFromV<V> d;
using T = TFromD<decltype(d)>;
using TU = MakeUnsigned<T>;
const TU xu = static_cast<TU>(GetLane(x));
const TU yu = static_cast<TU>(GetLane(y));
return Set(d, static_cast<T>(xu * yu));
}
template <class V, class D64 = DFromV<V>, HWY_IF_U64_D(D64),
HWY_IF_V_SIZE_GT_D(D64, 8)>
HWY_API V operator*(V x, V y) {
RepartitionToNarrow<D64> d32;
auto x32 = BitCast(d32, x);
auto y32 = BitCast(d32, y);
auto lolo = BitCast(d32, MulEven(x32, y32));
auto lohi = BitCast(d32, MulEven(x32, BitCast(d32, ShiftRight<32>(y))));
auto hilo = BitCast(d32, MulEven(BitCast(d32, ShiftRight<32>(x)), y32));
auto hi = BitCast(d32, ShiftLeft<32>(BitCast(D64{}, lohi + hilo)));
return BitCast(D64{}, lolo + hi);
}
template <class V, class DI64 = DFromV<V>, HWY_IF_I64_D(DI64),
HWY_IF_V_SIZE_GT_D(DI64, 8)>
HWY_API V operator*(V x, V y) {
RebindToUnsigned<DI64> du64;
return BitCast(DI64{}, BitCast(du64, x) * BitCast(du64, y));
}
#endif // HWY_NATIVE_MUL_64
// ------------------------------ MulAdd / NegMulAdd
// "Include guard": skip if native int MulAdd instructions are available.
#if (defined(HWY_NATIVE_INT_FMA) == defined(HWY_TARGET_TOGGLE))
#ifdef HWY_NATIVE_INT_FMA
#undef HWY_NATIVE_INT_FMA
#else
#define HWY_NATIVE_INT_FMA
#endif
template <class V, HWY_IF_NOT_FLOAT_V(V)>
HWY_API V MulAdd(V mul, V x, V add) {
return Add(Mul(mul, x), add);
}
template <class V, HWY_IF_NOT_FLOAT_V(V)>
HWY_API V NegMulAdd(V mul, V x, V add) {
return Sub(add, Mul(mul, x));
}
#endif // HWY_NATIVE_INT_FMA
// ------------------------------ Compress*
// "Include guard": skip if native 8-bit compress instructions are available.
#if (defined(HWY_NATIVE_COMPRESS8) == defined(HWY_TARGET_TOGGLE))
#ifdef HWY_NATIVE_COMPRESS8
#undef HWY_NATIVE_COMPRESS8
#else
#define HWY_NATIVE_COMPRESS8
#endif
template <class V, class D, typename T, HWY_IF_T_SIZE(T, 1)>
HWY_API size_t CompressBitsStore(V v, const uint8_t* HWY_RESTRICT bits, D d,
T* unaligned) {
HWY_ALIGN T lanes[MaxLanes(d)];
Store(v, d, lanes);
const Simd<T, HWY_MIN(MaxLanes(d), 8), 0> d8;
T* HWY_RESTRICT pos = unaligned;
HWY_ALIGN constexpr T table[2048] = {
0, 1, 2, 3, 4, 5, 6, 7, /**/ 0, 1, 2, 3, 4, 5, 6, 7, //
1, 0, 2, 3, 4, 5, 6, 7, /**/ 0, 1, 2, 3, 4, 5, 6, 7, //
2, 0, 1, 3, 4, 5, 6, 7, /**/ 0, 2, 1, 3, 4, 5, 6, 7, //
1, 2, 0, 3, 4, 5, 6, 7, /**/ 0, 1, 2, 3, 4, 5, 6, 7, //
3, 0, 1, 2, 4, 5, 6, 7, /**/ 0, 3, 1, 2, 4, 5, 6, 7, //
1, 3, 0, 2, 4, 5, 6, 7, /**/ 0, 1, 3, 2, 4, 5, 6, 7, //
2, 3, 0, 1, 4, 5, 6, 7, /**/ 0, 2, 3, 1, 4, 5, 6, 7, //
1, 2, 3, 0, 4, 5, 6, 7, /**/ 0, 1, 2, 3, 4, 5, 6, 7, //
4, 0, 1, 2, 3, 5, 6, 7, /**/ 0, 4, 1, 2, 3, 5, 6, 7, //
1, 4, 0, 2, 3, 5, 6, 7, /**/ 0, 1, 4, 2, 3, 5, 6, 7, //
2, 4, 0, 1, 3, 5, 6, 7, /**/ 0, 2, 4, 1, 3, 5, 6, 7, //
1, 2, 4, 0, 3, 5, 6, 7, /**/ 0, 1, 2, 4, 3, 5, 6, 7, //
3, 4, 0, 1, 2, 5, 6, 7, /**/ 0, 3, 4, 1, 2, 5, 6, 7, //
1, 3, 4, 0, 2, 5, 6, 7, /**/ 0, 1, 3, 4, 2, 5, 6, 7, //
2, 3, 4, 0, 1, 5, 6, 7, /**/ 0, 2, 3, 4, 1, 5, 6, 7, //
1, 2, 3, 4, 0, 5, 6, 7, /**/ 0, 1, 2, 3, 4, 5, 6, 7, //
5, 0, 1, 2, 3, 4, 6, 7, /**/ 0, 5, 1, 2, 3, 4, 6, 7, //
1, 5, 0, 2, 3, 4, 6, 7, /**/ 0, 1, 5, 2, 3, 4, 6, 7, //
2, 5, 0, 1, 3, 4, 6, 7, /**/ 0, 2, 5, 1, 3, 4, 6, 7, //
1, 2, 5, 0, 3, 4, 6, 7, /**/ 0, 1, 2, 5, 3, 4, 6, 7, //
3, 5, 0, 1, 2, 4, 6, 7, /**/ 0, 3, 5, 1, 2, 4, 6, 7, //
1, 3, 5, 0, 2, 4, 6, 7, /**/ 0, 1, 3, 5, 2, 4, 6, 7, //
2, 3, 5, 0, 1, 4, 6, 7, /**/ 0, 2, 3, 5, 1, 4, 6, 7, //
1, 2, 3, 5, 0, 4, 6, 7, /**/ 0, 1, 2, 3, 5, 4, 6, 7, //
4, 5, 0, 1, 2, 3, 6, 7, /**/ 0, 4, 5, 1, 2, 3, 6, 7, //
1, 4, 5, 0, 2, 3, 6, 7, /**/ 0, 1, 4, 5, 2, 3, 6, 7, //
2, 4, 5, 0, 1, 3, 6, 7, /**/ 0, 2, 4, 5, 1, 3, 6, 7, //
1, 2, 4, 5, 0, 3, 6, 7, /**/ 0, 1, 2, 4, 5, 3, 6, 7, //
3, 4, 5, 0, 1, 2, 6, 7, /**/ 0, 3, 4, 5, 1, 2, 6, 7, //
1, 3, 4, 5, 0, 2, 6, 7, /**/ 0, 1, 3, 4, 5, 2, 6, 7, //
2, 3, 4, 5, 0, 1, 6, 7, /**/ 0, 2, 3, 4, 5, 1, 6, 7, //
1, 2, 3, 4, 5, 0, 6, 7, /**/ 0, 1, 2, 3, 4, 5, 6, 7, //
6, 0, 1, 2, 3, 4, 5, 7, /**/ 0, 6, 1, 2, 3, 4, 5, 7, //
1, 6, 0, 2, 3, 4, 5, 7, /**/ 0, 1, 6, 2, 3, 4, 5, 7, //
2, 6, 0, 1, 3, 4, 5, 7, /**/ 0, 2, 6, 1, 3, 4, 5, 7, //
1, 2, 6, 0, 3, 4, 5, 7, /**/ 0, 1, 2, 6, 3, 4, 5, 7, //
3, 6, 0, 1, 2, 4, 5, 7, /**/ 0, 3, 6, 1, 2, 4, 5, 7, //
1, 3, 6, 0, 2, 4, 5, 7, /**/ 0, 1, 3, 6, 2, 4, 5, 7, //
2, 3, 6, 0, 1, 4, 5, 7, /**/ 0, 2, 3, 6, 1, 4, 5, 7, //
1, 2, 3, 6, 0, 4, 5, 7, /**/ 0, 1, 2, 3, 6, 4, 5, 7, //
4, 6, 0, 1, 2, 3, 5, 7, /**/ 0, 4, 6, 1, 2, 3, 5, 7, //
1, 4, 6, 0, 2, 3, 5, 7, /**/ 0, 1, 4, 6, 2, 3, 5, 7, //
2, 4, 6, 0, 1, 3, 5, 7, /**/ 0, 2, 4, 6, 1, 3, 5, 7, //
1, 2, 4, 6, 0, 3, 5, 7, /**/ 0, 1, 2, 4, 6, 3, 5, 7, //
3, 4, 6, 0, 1, 2, 5, 7, /**/ 0, 3, 4, 6, 1, 2, 5, 7, //
1, 3, 4, 6, 0, 2, 5, 7, /**/ 0, 1, 3, 4, 6, 2, 5, 7, //
2, 3, 4, 6, 0, 1, 5, 7, /**/ 0, 2, 3, 4, 6, 1, 5, 7, //
1, 2, 3, 4, 6, 0, 5, 7, /**/ 0, 1, 2, 3, 4, 6, 5, 7, //
5, 6, 0, 1, 2, 3, 4, 7, /**/ 0, 5, 6, 1, 2, 3, 4, 7, //
1, 5, 6, 0, 2, 3, 4, 7, /**/ 0, 1, 5, 6, 2, 3, 4, 7, //
2, 5, 6, 0, 1, 3, 4, 7, /**/ 0, 2, 5, 6, 1, 3, 4, 7, //
1, 2, 5, 6, 0, 3, 4, 7, /**/ 0, 1, 2, 5, 6, 3, 4, 7, //
3, 5, 6, 0, 1, 2, 4, 7, /**/ 0, 3, 5, 6, 1, 2, 4, 7, //
1, 3, 5, 6, 0, 2, 4, 7, /**/ 0, 1, 3, 5, 6, 2, 4, 7, //
2, 3, 5, 6, 0, 1, 4, 7, /**/ 0, 2, 3, 5, 6, 1, 4, 7, //
1, 2, 3, 5, 6, 0, 4, 7, /**/ 0, 1, 2, 3, 5, 6, 4, 7, //
4, 5, 6, 0, 1, 2, 3, 7, /**/ 0, 4, 5, 6, 1, 2, 3, 7, //
1, 4, 5, 6, 0, 2, 3, 7, /**/ 0, 1, 4, 5, 6, 2, 3, 7, //
2, 4, 5, 6, 0, 1, 3, 7, /**/ 0, 2, 4, 5, 6, 1, 3, 7, //
1, 2, 4, 5, 6, 0, 3, 7, /**/ 0, 1, 2, 4, 5, 6, 3, 7, //
3, 4, 5, 6, 0, 1, 2, 7, /**/ 0, 3, 4, 5, 6, 1, 2, 7, //
1, 3, 4, 5, 6, 0, 2, 7, /**/ 0, 1, 3, 4, 5, 6, 2, 7, //
2, 3, 4, 5, 6, 0, 1, 7, /**/ 0, 2, 3, 4, 5, 6, 1, 7, //
1, 2, 3, 4, 5, 6, 0, 7, /**/ 0, 1, 2, 3, 4, 5, 6, 7, //
7, 0, 1, 2, 3, 4, 5, 6, /**/ 0, 7, 1, 2, 3, 4, 5, 6, //
1, 7, 0, 2, 3, 4, 5, 6, /**/ 0, 1, 7, 2, 3, 4, 5, 6, //
2, 7, 0, 1, 3, 4, 5, 6, /**/ 0, 2, 7, 1, 3, 4, 5, 6, //
1, 2, 7, 0, 3, 4, 5, 6, /**/ 0, 1, 2, 7, 3, 4, 5, 6, //
3, 7, 0, 1, 2, 4, 5, 6, /**/ 0, 3, 7, 1, 2, 4, 5, 6, //
1, 3, 7, 0, 2, 4, 5, 6, /**/ 0, 1, 3, 7, 2, 4, 5, 6, //
2, 3, 7, 0, 1, 4, 5, 6, /**/ 0, 2, 3, 7, 1, 4, 5, 6, //
1, 2, 3, 7, 0, 4, 5, 6, /**/ 0, 1, 2, 3, 7, 4, 5, 6, //
4, 7, 0, 1, 2, 3, 5, 6, /**/ 0, 4, 7, 1, 2, 3, 5, 6, //
1, 4, 7, 0, 2, 3, 5, 6, /**/ 0, 1, 4, 7, 2, 3, 5, 6, //
2, 4, 7, 0, 1, 3, 5, 6, /**/ 0, 2, 4, 7, 1, 3, 5, 6, //
1, 2, 4, 7, 0, 3, 5, 6, /**/ 0, 1, 2, 4, 7, 3, 5, 6, //
3, 4, 7, 0, 1, 2, 5, 6, /**/ 0, 3, 4, 7, 1, 2, 5, 6, //
1, 3, 4, 7, 0, 2, 5, 6, /**/ 0, 1, 3, 4, 7, 2, 5, 6, //
2, 3, 4, 7, 0, 1, 5, 6, /**/ 0, 2, 3, 4, 7, 1, 5, 6, //
1, 2, 3, 4, 7, 0, 5, 6, /**/ 0, 1, 2, 3, 4, 7, 5, 6, //
5, 7, 0, 1, 2, 3, 4, 6, /**/ 0, 5, 7, 1, 2, 3, 4, 6, //
1, 5, 7, 0, 2, 3, 4, 6, /**/ 0, 1, 5, 7, 2, 3, 4, 6, //
2, 5, 7, 0, 1, 3, 4, 6, /**/ 0, 2, 5, 7, 1, 3, 4, 6, //
1, 2, 5, 7, 0, 3, 4, 6, /**/ 0, 1, 2, 5, 7, 3, 4, 6, //
3, 5, 7, 0, 1, 2, 4, 6, /**/ 0, 3, 5, 7, 1, 2, 4, 6, //
1, 3, 5, 7, 0, 2, 4, 6, /**/ 0, 1, 3, 5, 7, 2, 4, 6, //
2, 3, 5, 7, 0, 1, 4, 6, /**/ 0, 2, 3, 5, 7, 1, 4, 6, //
1, 2, 3, 5, 7, 0, 4, 6, /**/ 0, 1, 2, 3, 5, 7, 4, 6, //
4, 5, 7, 0, 1, 2, 3, 6, /**/ 0, 4, 5, 7, 1, 2, 3, 6, //
1, 4, 5, 7, 0, 2, 3, 6, /**/ 0, 1, 4, 5, 7, 2, 3, 6, //
2, 4, 5, 7, 0, 1, 3, 6, /**/ 0, 2, 4, 5, 7, 1, 3, 6, //
1, 2, 4, 5, 7, 0, 3, 6, /**/ 0, 1, 2, 4, 5, 7, 3, 6, //
3, 4, 5, 7, 0, 1, 2, 6, /**/ 0, 3, 4, 5, 7, 1, 2, 6, //
1, 3, 4, 5, 7, 0, 2, 6, /**/ 0, 1, 3, 4, 5, 7, 2, 6, //
2, 3, 4, 5, 7, 0, 1, 6, /**/ 0, 2, 3, 4, 5, 7, 1, 6, //
1, 2, 3, 4, 5, 7, 0, 6, /**/ 0, 1, 2, 3, 4, 5, 7, 6, //
6, 7, 0, 1, 2, 3, 4, 5, /**/ 0, 6, 7, 1, 2, 3, 4, 5, //
1, 6, 7, 0, 2, 3, 4, 5, /**/ 0, 1, 6, 7, 2, 3, 4, 5, //
2, 6, 7, 0, 1, 3, 4, 5, /**/ 0, 2, 6, 7, 1, 3, 4, 5, //
1, 2, 6, 7, 0, 3, 4, 5, /**/ 0, 1, 2, 6, 7, 3, 4, 5, //
3, 6, 7, 0, 1, 2, 4, 5, /**/ 0, 3, 6, 7, 1, 2, 4, 5, //
1, 3, 6, 7, 0, 2, 4, 5, /**/ 0, 1, 3, 6, 7, 2, 4, 5, //
2, 3, 6, 7, 0, 1, 4, 5, /**/ 0, 2, 3, 6, 7, 1, 4, 5, //
1, 2, 3, 6, 7, 0, 4, 5, /**/ 0, 1, 2, 3, 6, 7, 4, 5, //
4, 6, 7, 0, 1, 2, 3, 5, /**/ 0, 4, 6, 7, 1, 2, 3, 5, //
1, 4, 6, 7, 0, 2, 3, 5, /**/ 0, 1, 4, 6, 7, 2, 3, 5, //
2, 4, 6, 7, 0, 1, 3, 5, /**/ 0, 2, 4, 6, 7, 1, 3, 5, //
1, 2, 4, 6, 7, 0, 3, 5, /**/ 0, 1, 2, 4, 6, 7, 3, 5, //
3, 4, 6, 7, 0, 1, 2, 5, /**/ 0, 3, 4, 6, 7, 1, 2, 5, //
1, 3, 4, 6, 7, 0, 2, 5, /**/ 0, 1, 3, 4, 6, 7, 2, 5, //
2, 3, 4, 6, 7, 0, 1, 5, /**/ 0, 2, 3, 4, 6, 7, 1, 5, //
1, 2, 3, 4, 6, 7, 0, 5, /**/ 0, 1, 2, 3, 4, 6, 7, 5, //
5, 6, 7, 0, 1, 2, 3, 4, /**/ 0, 5, 6, 7, 1, 2, 3, 4, //
1, 5, 6, 7, 0, 2, 3, 4, /**/ 0, 1, 5, 6, 7, 2, 3, 4, //
2, 5, 6, 7, 0, 1, 3, 4, /**/ 0, 2, 5, 6, 7, 1, 3, 4, //
1, 2, 5, 6, 7, 0, 3, 4, /**/ 0, 1, 2, 5, 6, 7, 3, 4, //
3, 5, 6, 7, 0, 1, 2, 4, /**/ 0, 3, 5, 6, 7, 1, 2, 4, //
1, 3, 5, 6, 7, 0, 2, 4, /**/ 0, 1, 3, 5, 6, 7, 2, 4, //
2, 3, 5, 6, 7, 0, 1, 4, /**/ 0, 2, 3, 5, 6, 7, 1, 4, //
1, 2, 3, 5, 6, 7, 0, 4, /**/ 0, 1, 2, 3, 5, 6, 7, 4, //
4, 5, 6, 7, 0, 1, 2, 3, /**/ 0, 4, 5, 6, 7, 1, 2, 3, //
1, 4, 5, 6, 7, 0, 2, 3, /**/ 0, 1, 4, 5, 6, 7, 2, 3, //
2, 4, 5, 6, 7, 0, 1, 3, /**/ 0, 2, 4, 5, 6, 7, 1, 3, //
1, 2, 4, 5, 6, 7, 0, 3, /**/ 0, 1, 2, 4, 5, 6, 7, 3, //
3, 4, 5, 6, 7, 0, 1, 2, /**/ 0, 3, 4, 5, 6, 7, 1, 2, //
1, 3, 4, 5, 6, 7, 0, 2, /**/ 0, 1, 3, 4, 5, 6, 7, 2, //
2, 3, 4, 5, 6, 7, 0, 1, /**/ 0, 2, 3, 4, 5, 6, 7, 1, //
1, 2, 3, 4, 5, 6, 7, 0, /**/ 0, 1, 2, 3, 4, 5, 6, 7};
for (size_t i = 0; i < Lanes(d); i += 8) {
// Each byte worth of bits is the index of one of 256 8-byte ranges, and its
// population count determines how far to advance the write position.
const size_t bits8 = bits[i / 8];
const auto indices = Load(d8, table + bits8 * 8);
const auto compressed = TableLookupBytes(LoadU(d8, lanes + i), indices);
StoreU(compressed, d8, pos);
pos += PopCount(bits8);
}
return static_cast<size_t>(pos - unaligned);
}
template <class V, class M, class D, typename T, HWY_IF_T_SIZE(T, 1)>
HWY_API size_t CompressStore(V v, M mask, D d, T* HWY_RESTRICT unaligned) {
uint8_t bits[HWY_MAX(size_t{8}, MaxLanes(d) / 8)];
(void)StoreMaskBits(d, mask, bits);
return CompressBitsStore(v, bits, d, unaligned);
}
template <class V, class M, class D, typename T, HWY_IF_T_SIZE(T, 1)>
HWY_API size_t CompressBlendedStore(V v, M mask, D d,
T* HWY_RESTRICT unaligned) {
HWY_ALIGN T buf[MaxLanes(d)];
const size_t bytes = CompressStore(v, mask, d, buf);
BlendedStore(Load(d, buf), FirstN(d, bytes), d, unaligned);
return bytes;
}
// For reasons unknown, HWY_IF_T_SIZE_V is a compile error in SVE.
template <class V, class M, typename T = TFromV<V>, HWY_IF_T_SIZE(T, 1)>
HWY_API V Compress(V v, const M mask) {
const DFromV<V> d;
HWY_ALIGN T lanes[MaxLanes(d)];
(void)CompressStore(v, mask, d, lanes);
return Load(d, lanes);
}
template <class V, typename T = TFromV<V>, HWY_IF_T_SIZE(T, 1)>
HWY_API V CompressBits(V v, const uint8_t* HWY_RESTRICT bits) {
const DFromV<V> d;
HWY_ALIGN T lanes[MaxLanes(d)];
(void)CompressBitsStore(v, bits, d, lanes);
return Load(d, lanes);
}
template <class V, class M, typename T = TFromV<V>, HWY_IF_T_SIZE(T, 1)>
HWY_API V CompressNot(V v, M mask) {
return Compress(v, Not(mask));
}
#endif // HWY_NATIVE_COMPRESS8
// ------------------------------ Expand
// "Include guard": skip if native 8/16-bit Expand/LoadExpand are available.
// Note that this generic implementation assumes <= 128 bit fixed vectors;
// the SVE and RVV targets provide their own native implementations.
#if (defined(HWY_NATIVE_EXPAND) == defined(HWY_TARGET_TOGGLE)) || HWY_IDE
#ifdef HWY_NATIVE_EXPAND
#undef HWY_NATIVE_EXPAND
#else
#define HWY_NATIVE_EXPAND
#endif
namespace detail {
#if HWY_IDE
template <class M>
HWY_INLINE uint64_t BitsFromMask(M /* mask */) {
return 0;
}
#endif // HWY_IDE
template <size_t N>
HWY_INLINE Vec128<uint8_t, N> IndicesForExpandFromBits(uint64_t mask_bits) {
static_assert(N <= 8, "Should only be called for half-vectors");
const Simd<uint8_t, N, 0> du8;
HWY_DASSERT(mask_bits < 0x100);
alignas(16) static constexpr uint8_t table[2048] = {
// PrintExpand8x8Tables
128, 128, 128, 128, 128, 128, 128, 128, //
0, 128, 128, 128, 128, 128, 128, 128, //
128, 0, 128, 128, 128, 128, 128, 128, //
0, 1, 128, 128, 128, 128, 128, 128, //
128, 128, 0, 128, 128, 128, 128, 128, //
0, 128, 1, 128, 128, 128, 128, 128, //
128, 0, 1, 128, 128, 128, 128, 128, //
0, 1, 2, 128, 128, 128, 128, 128, //
128, 128, 128, 0, 128, 128, 128, 128, //
0, 128, 128, 1, 128, 128, 128, 128, //
128, 0, 128, 1, 128, 128, 128, 128, //
0, 1, 128, 2, 128, 128, 128, 128, //
128, 128, 0, 1, 128, 128, 128, 128, //
0, 128, 1, 2, 128, 128, 128, 128, //
128, 0, 1, 2, 128, 128, 128, 128, //
0, 1, 2, 3, 128, 128, 128, 128, //
128, 128, 128, 128, 0, 128, 128, 128, //
0, 128, 128, 128, 1, 128, 128, 128, //
128, 0, 128, 128, 1, 128, 128, 128, //
0, 1, 128, 128, 2, 128, 128, 128, //
128, 128, 0, 128, 1, 128, 128, 128, //
0, 128, 1, 128, 2, 128, 128, 128, //
128, 0, 1, 128, 2, 128, 128, 128, //
0, 1, 2, 128, 3, 128, 128, 128, //
128, 128, 128, 0, 1, 128, 128, 128, //
0, 128, 128, 1, 2, 128, 128, 128, //
128, 0, 128, 1, 2, 128, 128, 128, //
0, 1, 128, 2, 3, 128, 128, 128, //
128, 128, 0, 1, 2, 128, 128, 128, //
0, 128, 1, 2, 3, 128, 128, 128, //
128, 0, 1, 2, 3, 128, 128, 128, //
0, 1, 2, 3, 4, 128, 128, 128, //
128, 128, 128, 128, 128, 0, 128, 128, //
0, 128, 128, 128, 128, 1, 128, 128, //
128, 0, 128, 128, 128, 1, 128, 128, //
0, 1, 128, 128, 128, 2, 128, 128, //
128, 128, 0, 128, 128, 1, 128, 128, //
0, 128, 1, 128, 128, 2, 128, 128, //
128, 0, 1, 128, 128, 2, 128, 128, //
0, 1, 2, 128, 128, 3, 128, 128, //
128, 128, 128, 0, 128, 1, 128, 128, //
0, 128, 128, 1, 128, 2, 128, 128, //
128, 0, 128, 1, 128, 2, 128, 128, //
0, 1, 128, 2, 128, 3, 128, 128, //
128, 128, 0, 1, 128, 2, 128, 128, //
0, 128, 1, 2, 128, 3, 128, 128, //
128, 0, 1, 2, 128, 3, 128, 128, //
0, 1, 2, 3, 128, 4, 128, 128, //
128, 128, 128, 128, 0, 1, 128, 128, //
0, 128, 128, 128, 1, 2, 128, 128, //
128, 0, 128, 128, 1, 2, 128, 128, //
0, 1, 128, 128, 2, 3, 128, 128, //
128, 128, 0, 128, 1, 2, 128, 128, //
0, 128, 1, 128, 2, 3, 128, 128, //
128, 0, 1, 128, 2, 3, 128, 128, //
0, 1, 2, 128, 3, 4, 128, 128, //
128, 128, 128, 0, 1, 2, 128, 128, //
0, 128, 128, 1, 2, 3, 128, 128, //
128, 0, 128, 1, 2, 3, 128, 128, //
0, 1, 128, 2, 3, 4, 128, 128, //
128, 128, 0, 1, 2, 3, 128, 128, //
0, 128, 1, 2, 3, 4, 128, 128, //
128, 0, 1, 2, 3, 4, 128, 128, //
0, 1, 2, 3, 4, 5, 128, 128, //
128, 128, 128, 128, 128, 128, 0, 128, //
0, 128, 128, 128, 128, 128, 1, 128, //
128, 0, 128, 128, 128, 128, 1, 128, //
0, 1, 128, 128, 128, 128, 2, 128, //
128, 128, 0, 128, 128, 128, 1, 128, //
0, 128, 1, 128, 128, 128, 2, 128, //
128, 0, 1, 128, 128, 128, 2, 128, //
0, 1, 2, 128, 128, 128, 3, 128, //
128, 128, 128, 0, 128, 128, 1, 128, //
0, 128, 128, 1, 128, 128, 2, 128, //
128, 0, 128, 1, 128, 128, 2, 128, //
0, 1, 128, 2, 128, 128, 3, 128, //
128, 128, 0, 1, 128, 128, 2, 128, //
0, 128, 1, 2, 128, 128, 3, 128, //
128, 0, 1, 2, 128, 128, 3, 128, //
0, 1, 2, 3, 128, 128, 4, 128, //
128, 128, 128, 128, 0, 128, 1, 128, //
0, 128, 128, 128, 1, 128, 2, 128, //
128, 0, 128, 128, 1, 128, 2, 128, //
0, 1, 128, 128, 2, 128, 3, 128, //
128, 128, 0, 128, 1, 128, 2, 128, //
0, 128, 1, 128, 2, 128, 3, 128, //
128, 0, 1, 128, 2, 128, 3, 128, //
0, 1, 2, 128, 3, 128, 4, 128, //
128, 128, 128, 0, 1, 128, 2, 128, //
0, 128, 128, 1, 2, 128, 3, 128, //
128, 0, 128, 1, 2, 128, 3, 128, //
0, 1, 128, 2, 3, 128, 4, 128, //
128, 128, 0, 1, 2, 128, 3, 128, //
0, 128, 1, 2, 3, 128, 4, 128, //
128, 0, 1, 2, 3, 128, 4, 128, //
0, 1, 2, 3, 4, 128, 5, 128, //
128, 128, 128, 128, 128, 0, 1, 128, //
0, 128, 128, 128, 128, 1, 2, 128, //
128, 0, 128, 128, 128, 1, 2, 128, //
0, 1, 128, 128, 128, 2, 3, 128, //
128, 128, 0, 128, 128, 1, 2, 128, //
0, 128, 1, 128, 128, 2, 3, 128, //
128, 0, 1, 128, 128, 2, 3, 128, //
0, 1, 2, 128, 128, 3, 4, 128, //
128, 128, 128, 0, 128, 1, 2, 128, //
0, 128, 128, 1, 128, 2, 3, 128, //
128, 0, 128, 1, 128, 2, 3, 128, //
0, 1, 128, 2, 128, 3, 4, 128, //
128, 128, 0, 1, 128, 2, 3, 128, //
0, 128, 1, 2, 128, 3, 4, 128, //
128, 0, 1, 2, 128, 3, 4, 128, //
0, 1, 2, 3, 128, 4, 5, 128, //
128, 128, 128, 128, 0, 1, 2, 128, //
0, 128, 128, 128, 1, 2, 3, 128, //
128, 0, 128, 128, 1, 2, 3, 128, //
0, 1, 128, 128, 2, 3, 4, 128, //
128, 128, 0, 128, 1, 2, 3, 128, //
0, 128, 1, 128, 2, 3, 4, 128, //
128, 0, 1, 128, 2, 3, 4, 128, //
0, 1, 2, 128, 3, 4, 5, 128, //
128, 128, 128, 0, 1, 2, 3, 128, //
0, 128, 128, 1, 2, 3, 4, 128, //
128, 0, 128, 1, 2, 3, 4, 128, //
0, 1, 128, 2, 3, 4, 5, 128, //
128, 128, 0, 1, 2, 3, 4, 128, //
0, 128, 1, 2, 3, 4, 5, 128, //
128, 0, 1, 2, 3, 4, 5, 128, //
0, 1, 2, 3, 4, 5, 6, 128, //
128, 128, 128, 128, 128, 128, 128, 0, //
0, 128, 128, 128, 128, 128, 128, 1, //
128, 0, 128, 128, 128, 128, 128, 1, //
0, 1, 128, 128, 128, 128, 128, 2, //
128, 128, 0, 128, 128, 128, 128, 1, //
0, 128, 1, 128, 128, 128, 128, 2, //
128, 0, 1, 128, 128, 128, 128, 2, //
0, 1, 2, 128, 128, 128, 128, 3, //
128, 128, 128, 0, 128, 128, 128, 1, //
0, 128, 128, 1, 128, 128, 128, 2, //
128, 0, 128, 1, 128, 128, 128, 2, //
0, 1, 128, 2, 128, 128, 128, 3, //
128, 128, 0, 1, 128, 128, 128, 2, //
0, 128, 1, 2, 128, 128, 128, 3, //
128, 0, 1, 2, 128, 128, 128, 3, //
0, 1, 2, 3, 128, 128, 128, 4, //
128, 128, 128, 128, 0, 128, 128, 1, //
0, 128, 128, 128, 1, 128, 128, 2, //
128, 0, 128, 128, 1, 128, 128, 2, //
0, 1, 128, 128, 2, 128, 128, 3, //
128, 128, 0, 128, 1, 128, 128, 2, //
0, 128, 1, 128, 2, 128, 128, 3, //
128, 0, 1, 128, 2, 128, 128, 3, //
0, 1, 2, 128, 3, 128, 128, 4, //
128, 128, 128, 0, 1, 128, 128, 2, //
0, 128, 128, 1, 2, 128, 128, 3, //
128, 0, 128, 1, 2, 128, 128, 3, //
0, 1, 128, 2, 3, 128, 128, 4, //
128, 128, 0, 1, 2, 128, 128, 3, //
0, 128, 1, 2, 3, 128, 128, 4, //
128, 0, 1, 2, 3, 128, 128, 4, //
0, 1, 2, 3, 4, 128, 128, 5, //
128, 128, 128, 128, 128, 0, 128, 1, //
0, 128, 128, 128, 128, 1, 128, 2, //
128, 0, 128, 128, 128, 1, 128, 2, //
0, 1, 128, 128, 128, 2, 128, 3, //
128, 128, 0, 128, 128, 1, 128, 2, //
0, 128, 1, 128, 128, 2, 128, 3, //
128, 0, 1, 128, 128, 2, 128, 3, //
0, 1, 2, 128, 128, 3, 128, 4, //
128, 128, 128, 0, 128, 1, 128, 2, //
0, 128, 128, 1, 128, 2, 128, 3, //
128, 0, 128, 1, 128, 2, 128, 3, //
0, 1, 128, 2, 128, 3, 128, 4, //
128, 128, 0, 1, 128, 2, 128, 3, //
0, 128, 1, 2, 128, 3, 128, 4, //
128, 0, 1, 2, 128, 3, 128, 4, //
0, 1, 2, 3, 128, 4, 128, 5, //
128, 128, 128, 128, 0, 1, 128, 2, //
0, 128, 128, 128, 1, 2, 128, 3, //
128, 0, 128, 128, 1, 2, 128, 3, //
0, 1, 128, 128, 2, 3, 128, 4, //
128, 128, 0, 128, 1, 2, 128, 3, //
0, 128, 1, 128, 2, 3, 128, 4, //
128, 0, 1, 128, 2, 3, 128, 4, //
0, 1, 2, 128, 3, 4, 128, 5, //
128, 128, 128, 0, 1, 2, 128, 3, //
0, 128, 128, 1, 2, 3, 128, 4, //
128, 0, 128, 1, 2, 3, 128, 4, //
0, 1, 128, 2, 3, 4, 128, 5, //
128, 128, 0, 1, 2, 3, 128, 4, //
0, 128, 1, 2, 3, 4, 128, 5, //
128, 0, 1, 2, 3, 4, 128, 5, //
0, 1, 2, 3, 4, 5, 128, 6, //
128, 128, 128, 128, 128, 128, 0, 1, //
0, 128, 128, 128, 128, 128, 1, 2, //
128, 0, 128, 128, 128, 128, 1, 2, //
0, 1, 128, 128, 128, 128, 2, 3, //
128, 128, 0, 128, 128, 128, 1, 2, //
0, 128, 1, 128, 128, 128, 2, 3, //
128, 0, 1, 128, 128, 128, 2, 3, //
0, 1, 2, 128, 128, 128, 3, 4, //
128, 128, 128, 0, 128, 128, 1, 2, //
0, 128, 128, 1, 128, 128, 2, 3, //
128, 0, 128, 1, 128, 128, 2, 3, //
0, 1, 128, 2, 128, 128, 3, 4, //
128, 128, 0, 1, 128, 128, 2, 3, //
0, 128, 1, 2, 128, 128, 3, 4, //
128, 0, 1, 2, 128, 128, 3, 4, //
0, 1, 2, 3, 128, 128, 4, 5, //
128, 128, 128, 128, 0, 128, 1, 2, //
0, 128, 128, 128, 1, 128, 2, 3, //
128, 0, 128, 128, 1, 128, 2, 3, //
0, 1, 128, 128, 2, 128, 3, 4, //
128, 128, 0, 128, 1, 128, 2, 3, //
0, 128, 1, 128, 2, 128, 3, 4, //
128, 0, 1, 128, 2, 128, 3, 4, //
0, 1, 2, 128, 3, 128, 4, 5, //
128, 128, 128, 0, 1, 128, 2, 3, //
0, 128, 128, 1, 2, 128, 3, 4, //
128, 0, 128, 1, 2, 128, 3, 4, //
0, 1, 128, 2, 3, 128, 4, 5, //
128, 128, 0, 1, 2, 128, 3, 4, //
0, 128, 1, 2, 3, 128, 4, 5, //
128, 0, 1, 2, 3, 128, 4, 5, //
0, 1, 2, 3, 4, 128, 5, 6, //
128, 128, 128, 128, 128, 0, 1, 2, //
0, 128, 128, 128, 128, 1, 2, 3, //
128, 0, 128, 128, 128, 1, 2, 3, //
0, 1, 128, 128, 128, 2, 3, 4, //
128, 128, 0, 128, 128, 1, 2, 3, //
0, 128, 1, 128, 128, 2, 3, 4, //
128, 0, 1, 128, 128, 2, 3, 4, //
0, 1, 2, 128, 128, 3, 4, 5, //
128, 128, 128, 0, 128, 1, 2, 3, //
0, 128, 128, 1, 128, 2, 3, 4, //
128, 0, 128, 1, 128, 2, 3, 4, //
0, 1, 128, 2, 128, 3, 4, 5, //
128, 128, 0, 1, 128, 2, 3, 4, //
0, 128, 1, 2, 128, 3, 4, 5, //
128, 0, 1, 2, 128, 3, 4, 5, //
0, 1, 2, 3, 128, 4, 5, 6, //
128, 128, 128, 128, 0, 1, 2, 3, //
0, 128, 128, 128, 1, 2, 3, 4, //
128, 0, 128, 128, 1, 2, 3, 4, //
0, 1, 128, 128, 2, 3, 4, 5, //
128, 128, 0, 128, 1, 2, 3, 4, //
0, 128, 1, 128, 2, 3, 4, 5, //
128, 0, 1, 128, 2, 3, 4, 5, //
0, 1, 2, 128, 3, 4, 5, 6, //
128, 128, 128, 0, 1, 2, 3, 4, //
0, 128, 128, 1, 2, 3, 4, 5, //
128, 0, 128, 1, 2, 3, 4, 5, //
0, 1, 128, 2, 3, 4, 5, 6, //
128, 128, 0, 1, 2, 3, 4, 5, //
0, 128, 1, 2, 3, 4, 5, 6, //
128, 0, 1, 2, 3, 4, 5, 6, //
0, 1, 2, 3, 4, 5, 6, 7};
return LoadU(du8, table + mask_bits * 8);
}
} // namespace detail
// Half vector of bytes: one table lookup
template <typename T, size_t N, HWY_IF_T_SIZE(T, 1), HWY_IF_V_SIZE_LE(T, N, 8)>
HWY_API Vec128<T, N> Expand(Vec128<T, N> v, Mask128<T, N> mask) {
const DFromV<decltype(v)> d;
const uint64_t mask_bits = detail::BitsFromMask(mask);
const Vec128<uint8_t, N> indices =
detail::IndicesForExpandFromBits<N>(mask_bits);
return BitCast(d, TableLookupBytesOr0(v, indices));
}
// Full vector of bytes: two table lookups
template <typename T, HWY_IF_T_SIZE(T, 1)>
HWY_API Vec128<T> Expand(Vec128<T> v, Mask128<T> mask) {
const Full128<T> d;
const RebindToUnsigned<decltype(d)> du;
const Half<decltype(du)> duh;
const Vec128<uint8_t> vu = BitCast(du, v);
const uint64_t mask_bits = detail::BitsFromMask(mask);
const uint64_t maskL = mask_bits & 0xFF;
const uint64_t maskH = mask_bits >> 8;
// We want to skip past the v bytes already consumed by idxL. There is no
// instruction for shift-reg by variable bytes. Storing v itself would work
// but would involve a store-load forwarding stall. We instead shuffle using
// loaded indices. multishift_epi64_epi8 would also help, but if we have that,
// we probably also have native 8-bit Expand.
alignas(16) static constexpr uint8_t iota[32] = {
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 12, 13, 14, 15, 128, 128, 128, 128, 128, 128,
128, 128, 128, 128, 128, 128, 128, 128, 128, 128};
const VFromD<decltype(du)> shift = LoadU(du, iota + PopCount(maskL));
const VFromD<decltype(duh)> vL = LowerHalf(duh, vu);
const VFromD<decltype(duh)> vH =
LowerHalf(duh, TableLookupBytesOr0(vu, shift));
const VFromD<decltype(duh)> idxL = detail::IndicesForExpandFromBits<8>(maskL);
const VFromD<decltype(duh)> idxH = detail::IndicesForExpandFromBits<8>(maskH);
const VFromD<decltype(duh)> expandL = TableLookupBytesOr0(vL, idxL);
const VFromD<decltype(duh)> expandH = TableLookupBytesOr0(vH, idxH);
return BitCast(d, Combine(du, expandH, expandL));
}
template <typename T, size_t N, HWY_IF_T_SIZE(T, 2)>
HWY_API Vec128<T, N> Expand(Vec128<T, N> v, Mask128<T, N> mask) {
const DFromV<decltype(v)> d;
const RebindToUnsigned<decltype(d)> du;
const Rebind<uint8_t, decltype(d)> du8;
const uint64_t mask_bits = detail::BitsFromMask(mask);
// Storing as 8-bit reduces table size from 4 KiB to 2 KiB. We cannot apply
// the nibble trick used below because not all indices fit within one lane.
alignas(16) static constexpr uint8_t table[2048] = {
// PrintExpand16x8ByteTables
128, 128, 128, 128, 128, 128, 128, 128, //
0, 128, 128, 128, 128, 128, 128, 128, //
128, 0, 128, 128, 128, 128, 128, 128, //
0, 2, 128, 128, 128, 128, 128, 128, //
128, 128, 0, 128, 128, 128, 128, 128, //
0, 128, 2, 128, 128, 128, 128, 128, //
128, 0, 2, 128, 128, 128, 128, 128, //
0, 2, 4, 128, 128, 128, 128, 128, //
128, 128, 128, 0, 128, 128, 128, 128, //
0, 128, 128, 2, 128, 128, 128, 128, //
128, 0, 128, 2, 128, 128, 128, 128, //
0, 2, 128, 4, 128, 128, 128, 128, //
128, 128, 0, 2, 128, 128, 128, 128, //
0, 128, 2, 4, 128, 128, 128, 128, //
128, 0, 2, 4, 128, 128, 128, 128, //
0, 2, 4, 6, 128, 128, 128, 128, //
128, 128, 128, 128, 0, 128, 128, 128, //
0, 128, 128, 128, 2, 128, 128, 128, //
128, 0, 128, 128, 2, 128, 128, 128, //
0, 2, 128, 128, 4, 128, 128, 128, //
128, 128, 0, 128, 2, 128, 128, 128, //
0, 128, 2, 128, 4, 128, 128, 128, //
128, 0, 2, 128, 4, 128, 128, 128, //
0, 2, 4, 128, 6, 128, 128, 128, //
128, 128, 128, 0, 2, 128, 128, 128, //
0, 128, 128, 2, 4, 128, 128, 128, //
128, 0, 128, 2, 4, 128, 128, 128, //
0, 2, 128, 4, 6, 128, 128, 128, //
128, 128, 0, 2, 4, 128, 128, 128, //
0, 128, 2, 4, 6, 128, 128, 128, //
128, 0, 2, 4, 6, 128, 128, 128, //
0, 2, 4, 6, 8, 128, 128, 128, //
128, 128, 128, 128, 128, 0, 128, 128, //
0, 128, 128, 128, 128, 2, 128, 128, //
128, 0, 128, 128, 128, 2, 128, 128, //
0, 2, 128, 128, 128, 4, 128, 128, //
128, 128, 0, 128, 128, 2, 128, 128, //
0, 128, 2, 128, 128, 4, 128, 128, //
128, 0, 2, 128, 128, 4, 128, 128, //
0, 2, 4, 128, 128, 6, 128, 128, //
128, 128, 128, 0, 128, 2, 128, 128, //
0, 128, 128, 2, 128, 4, 128, 128, //
128, 0, 128, 2, 128, 4, 128, 128, //
0, 2, 128, 4, 128, 6, 128, 128, //
128, 128, 0, 2, 128, 4, 128, 128, //
0, 128, 2, 4, 128, 6, 128, 128, //
128, 0, 2, 4, 128, 6, 128, 128, //
0, 2, 4, 6, 128, 8, 128, 128, //
128, 128, 128, 128, 0, 2, 128, 128, //
0, 128, 128, 128, 2, 4, 128, 128, //
128, 0, 128, 128, 2, 4, 128, 128, //
0, 2, 128, 128, 4, 6, 128, 128, //
128, 128, 0, 128, 2, 4, 128, 128, //
0, 128, 2, 128, 4, 6, 128, 128, //
128, 0, 2, 128, 4, 6, 128, 128, //
0, 2, 4, 128, 6, 8, 128, 128, //
128, 128, 128, 0, 2, 4, 128, 128, //
0, 128, 128, 2, 4, 6, 128, 128, //
128, 0, 128, 2, 4, 6, 128, 128, //
0, 2, 128, 4, 6, 8, 128, 128, //
128, 128, 0, 2, 4, 6, 128, 128, //
0, 128, 2, 4, 6, 8, 128, 128, //
128, 0, 2, 4, 6, 8, 128, 128, //
0, 2, 4, 6, 8, 10, 128, 128, //
128, 128, 128, 128, 128, 128, 0, 128, //
0, 128, 128, 128, 128, 128, 2, 128, //
128, 0, 128, 128, 128, 128, 2, 128, //
0, 2, 128, 128, 128, 128, 4, 128, //
128, 128, 0, 128, 128, 128, 2, 128, //
0, 128, 2, 128, 128, 128, 4, 128, //
128, 0, 2, 128, 128, 128, 4, 128, //
0, 2, 4, 128, 128, 128, 6, 128, //
128, 128, 128, 0, 128, 128, 2, 128, //
0, 128, 128, 2, 128, 128, 4, 128, //
128, 0, 128, 2, 128, 128, 4, 128, //
0, 2, 128, 4, 128, 128, 6, 128, //
128, 128, 0, 2, 128, 128, 4, 128, //
0, 128, 2, 4, 128, 128, 6, 128, //
128, 0, 2, 4, 128, 128, 6, 128, //
0, 2, 4, 6, 128, 128, 8, 128, //
128, 128, 128, 128, 0, 128, 2, 128, //
0, 128, 128, 128, 2, 128, 4, 128, //
128, 0, 128, 128, 2, 128, 4, 128, //
0, 2, 128, 128, 4, 128, 6, 128, //
128, 128, 0, 128, 2, 128, 4, 128, //
0, 128, 2, 128, 4, 128, 6, 128, //
128, 0, 2, 128, 4, 128, 6, 128, //
0, 2, 4, 128, 6, 128, 8, 128, //
128, 128, 128, 0, 2, 128, 4, 128, //
0, 128, 128, 2, 4, 128, 6, 128, //
128, 0, 128, 2, 4, 128, 6, 128, //
0, 2, 128, 4, 6, 128, 8, 128, //
128, 128, 0, 2, 4, 128, 6, 128, //
0, 128, 2, 4, 6, 128, 8, 128, //
128, 0, 2, 4, 6, 128, 8, 128, //
0, 2, 4, 6, 8, 128, 10, 128, //
128, 128, 128, 128, 128, 0, 2, 128, //
0, 128, 128, 128, 128, 2, 4, 128, //
128, 0, 128, 128, 128, 2, 4, 128, //
0, 2, 128, 128, 128, 4, 6, 128, //
128, 128, 0, 128, 128, 2, 4, 128, //
0, 128, 2, 128, 128, 4, 6, 128, //
128, 0, 2, 128, 128, 4, 6, 128, //
0, 2, 4, 128, 128, 6, 8, 128, //
128, 128, 128, 0, 128, 2, 4, 128, //
0, 128, 128, 2, 128, 4, 6, 128, //
128, 0, 128, 2, 128, 4, 6, 128, //
0, 2, 128, 4, 128, 6, 8, 128, //
128, 128, 0, 2, 128, 4, 6, 128, //
0, 128, 2, 4, 128, 6, 8, 128, //
128, 0, 2, 4, 128, 6, 8, 128, //
0, 2, 4, 6, 128, 8, 10, 128, //
128, 128, 128, 128, 0, 2, 4, 128, //
0, 128, 128, 128, 2, 4, 6, 128, //
128, 0, 128, 128, 2, 4, 6, 128, //
0, 2, 128, 128, 4, 6, 8, 128, //
128, 128, 0, 128, 2, 4, 6, 128, //
0, 128, 2, 128, 4, 6, 8, 128, //
128, 0, 2, 128, 4, 6, 8, 128, //
0, 2, 4, 128, 6, 8, 10, 128, //
128, 128, 128, 0, 2, 4, 6, 128, //
0, 128, 128, 2, 4, 6, 8, 128, //
128, 0, 128, 2, 4, 6, 8, 128, //
0, 2, 128, 4, 6, 8, 10, 128, //
128, 128, 0, 2, 4, 6, 8, 128, //
0, 128, 2, 4, 6, 8, 10, 128, //
128, 0, 2, 4, 6, 8, 10, 128, //
0, 2, 4, 6, 8, 10, 12, 128, //
128, 128, 128, 128, 128, 128, 128, 0, //
0, 128, 128, 128, 128, 128, 128, 2, //
128, 0, 128, 128, 128, 128, 128, 2, //
0, 2, 128, 128, 128, 128, 128, 4, //
128, 128, 0, 128, 128, 128, 128, 2, //
0, 128, 2, 128, 128, 128, 128, 4, //
128, 0, 2, 128, 128, 128, 128, 4, //
0, 2, 4, 128, 128, 128, 128, 6, //
128, 128, 128, 0, 128, 128, 128, 2, //
0, 128, 128, 2, 128, 128, 128, 4, //
128, 0, 128, 2, 128, 128, 128, 4, //
0, 2, 128, 4, 128, 128, 128, 6, //
128, 128, 0, 2, 128, 128, 128, 4, //
0, 128, 2, 4, 128, 128, 128, 6, //
128, 0, 2, 4, 128, 128, 128, 6, //
0, 2, 4, 6, 128, 128, 128, 8, //
128, 128, 128, 128, 0, 128, 128, 2, //
0, 128, 128, 128, 2, 128, 128, 4, //
128, 0, 128, 128, 2, 128, 128, 4, //
0, 2, 128, 128, 4, 128, 128, 6, //
128, 128, 0, 128, 2, 128, 128, 4, //
0, 128, 2, 128, 4, 128, 128, 6, //
128, 0, 2, 128, 4, 128, 128, 6, //
0, 2, 4, 128, 6, 128, 128, 8, //
128, 128, 128, 0, 2, 128, 128, 4, //
0, 128, 128, 2, 4, 128, 128, 6, //
128, 0, 128, 2, 4, 128, 128, 6, //
0, 2, 128, 4, 6, 128, 128, 8, //
128, 128, 0, 2, 4, 128, 128, 6, //
0, 128, 2, 4, 6, 128, 128, 8, //
128, 0, 2, 4, 6, 128, 128, 8, //
0, 2, 4, 6, 8, 128, 128, 10, //
128, 128, 128, 128, 128, 0, 128, 2, //
0, 128, 128, 128, 128, 2, 128, 4, //
128, 0, 128, 128, 128, 2, 128, 4, //
0, 2, 128, 128, 128, 4, 128, 6, //
128, 128, 0, 128, 128, 2, 128, 4, //
0, 128, 2, 128, 128, 4, 128, 6, //
128, 0, 2, 128, 128, 4, 128, 6, //
0, 2, 4, 128, 128, 6, 128, 8, //
128, 128, 128, 0, 128, 2, 128, 4, //
0, 128, 128, 2, 128, 4, 128, 6, //
128, 0, 128, 2, 128, 4, 128, 6, //
0, 2, 128, 4, 128, 6, 128, 8, //
128, 128, 0, 2, 128, 4, 128, 6, //
0, 128, 2, 4, 128, 6, 128, 8, //
128, 0, 2, 4, 128, 6, 128, 8, //
0, 2, 4, 6, 128, 8, 128, 10, //
128, 128, 128, 128, 0, 2, 128, 4, //
0, 128, 128, 128, 2, 4, 128, 6, //
128, 0, 128, 128, 2, 4, 128, 6, //
0, 2, 128, 128, 4, 6, 128, 8, //
128, 128, 0, 128, 2, 4, 128, 6, //
0, 128, 2, 128, 4, 6, 128, 8, //
128, 0, 2, 128, 4, 6, 128, 8, //
0, 2, 4, 128, 6, 8, 128, 10, //
128, 128, 128, 0, 2, 4, 128, 6, //
0, 128, 128, 2, 4, 6, 128, 8, //
128, 0, 128, 2, 4, 6, 128, 8, //
0, 2, 128, 4, 6, 8, 128, 10, //
128, 128, 0, 2, 4, 6, 128, 8, //
0, 128, 2, 4, 6, 8, 128, 10, //
128, 0, 2, 4, 6, 8, 128, 10, //
0, 2, 4, 6, 8, 10, 128, 12, //
128, 128, 128, 128, 128, 128, 0, 2, //
0, 128, 128, 128, 128, 128, 2, 4, //
128, 0, 128, 128, 128, 128, 2, 4, //
0, 2, 128, 128, 128, 128, 4, 6, //
128, 128, 0, 128, 128, 128, 2, 4, //
0, 128, 2, 128, 128, 128, 4, 6, //
128, 0, 2, 128, 128, 128, 4, 6, //
0, 2, 4, 128, 128, 128, 6, 8, //
128, 128, 128, 0, 128, 128, 2, 4, //
0, 128, 128, 2, 128, 128, 4, 6, //
128, 0, 128, 2, 128, 128, 4, 6, //
0, 2, 128, 4, 128, 128, 6, 8, //
128, 128, 0, 2, 128, 128, 4, 6, //
0, 128, 2, 4, 128, 128, 6, 8, //
128, 0, 2, 4, 128, 128, 6, 8, //
0, 2, 4, 6, 128, 128, 8, 10, //
128, 128, 128, 128, 0, 128, 2, 4, //
0, 128, 128, 128, 2, 128, 4, 6, //
128, 0, 128, 128, 2, 128, 4, 6, //
0, 2, 128, 128, 4, 128, 6, 8, //
128, 128, 0, 128, 2, 128, 4, 6, //
0, 128, 2, 128, 4, 128, 6, 8, //
128, 0, 2, 128, 4, 128, 6, 8, //
0, 2, 4, 128, 6, 128, 8, 10, //
128, 128, 128, 0, 2, 128, 4, 6, //
0, 128, 128, 2, 4, 128, 6, 8, //
128, 0, 128, 2, 4, 128, 6, 8, //
0, 2, 128, 4, 6, 128, 8, 10, //
128, 128, 0, 2, 4, 128, 6, 8, //
0, 128, 2, 4, 6, 128, 8, 10, //
128, 0, 2, 4, 6, 128, 8, 10, //
0, 2, 4, 6, 8, 128, 10, 12, //
128, 128, 128, 128, 128, 0, 2, 4, //
0, 128, 128, 128, 128, 2, 4, 6, //
128, 0, 128, 128, 128, 2, 4, 6, //
0, 2, 128, 128, 128, 4, 6, 8, //
128, 128, 0, 128, 128, 2, 4, 6, //
0, 128, 2, 128, 128, 4, 6, 8, //
128, 0, 2, 128, 128, 4, 6, 8, //
0, 2, 4, 128, 128, 6, 8, 10, //
128, 128, 128, 0, 128, 2, 4, 6, //
0, 128, 128, 2, 128, 4, 6, 8, //
128, 0, 128, 2, 128, 4, 6, 8, //
0, 2, 128, 4, 128, 6, 8, 10, //
128, 128, 0, 2, 128, 4, 6, 8, //
0, 128, 2, 4, 128, 6, 8, 10, //
128, 0, 2, 4, 128, 6, 8, 10, //
0, 2, 4, 6, 128, 8, 10, 12, //
128, 128, 128, 128, 0, 2, 4, 6, //
0, 128, 128, 128, 2, 4, 6, 8, //
128, 0, 128, 128, 2, 4, 6, 8, //
0, 2, 128, 128, 4, 6, 8, 10, //
128, 128, 0, 128, 2, 4, 6, 8, //
0, 128, 2, 128, 4, 6, 8, 10, //
128, 0, 2, 128, 4, 6, 8, 10, //
0, 2, 4, 128, 6, 8, 10, 12, //
128, 128, 128, 0, 2, 4, 6, 8, //
0, 128, 128, 2, 4, 6, 8, 10, //
128, 0, 128, 2, 4, 6, 8, 10, //
0, 2, 128, 4, 6, 8, 10, 12, //
128, 128, 0, 2, 4, 6, 8, 10, //
0, 128, 2, 4, 6, 8, 10, 12, //
128, 0, 2, 4, 6, 8, 10, 12, //
0, 2, 4, 6, 8, 10, 12, 14};
// Extend to double length because InterleaveLower will only use the (valid)
// lower half, and we want N u16.
const Twice<decltype(du8)> du8x2;
const Vec128<uint8_t, 2 * N> indices8 =
ZeroExtendVector(du8x2, Load(du8, table + mask_bits * 8));
const Vec128<uint16_t, N> indices16 =
BitCast(du, InterleaveLower(du8x2, indices8, indices8));
// TableLookupBytesOr0 operates on bytes. To convert u16 lane indices to byte
// indices, add 0 to even and 1 to odd byte lanes.
const Vec128<uint16_t, N> byte_indices = Add(indices16, Set(du, 0x0100));
return BitCast(d, TableLookupBytesOr0(v, byte_indices));
}
template <typename T, size_t N, HWY_IF_T_SIZE(T, 4)>
HWY_API Vec128<T, N> Expand(Vec128<T, N> v, Mask128<T, N> mask) {
const DFromV<decltype(v)> d;
const RebindToUnsigned<decltype(d)> du;
const uint64_t mask_bits = detail::BitsFromMask(mask);
alignas(16) static constexpr uint32_t packed_array[16] = {
// PrintExpand64x4Nibble - same for 32x4.
0x0000ffff, 0x0000fff0, 0x0000ff0f, 0x0000ff10, 0x0000f0ff, 0x0000f1f0,
0x0000f10f, 0x0000f210, 0x00000fff, 0x00001ff0, 0x00001f0f, 0x00002f10,
0x000010ff, 0x000021f0, 0x0000210f, 0x00003210};
// For lane i, shift the i-th 4-bit index down to bits [0, 2).
const Vec128<uint32_t, N> packed = Set(du, packed_array[mask_bits]);
alignas(16) static constexpr uint32_t shifts[4] = {0, 4, 8, 12};
Vec128<uint32_t, N> indices = packed >> Load(du, shifts);
// AVX2 _mm256_permutexvar_epi32 will ignore upper bits, but IndicesFromVec
// checks bounds, so clear the upper bits.
indices = And(indices, Set(du, N - 1));
const Vec128<uint32_t, N> expand =
TableLookupLanes(BitCast(du, v), IndicesFromVec(du, indices));
// TableLookupLanes cannot also zero masked-off lanes, so do that now.
return IfThenElseZero(mask, BitCast(d, expand));
}
template <typename T, HWY_IF_T_SIZE(T, 8)>
HWY_API Vec128<T> Expand(Vec128<T> v, Mask128<T> mask) {
// Same as Compress, just zero out the mask=false lanes.
return IfThenElseZero(mask, Compress(v, mask));
}
// For single-element vectors, this is at least as fast as native.
template <typename T>
HWY_API Vec128<T, 1> Expand(Vec128<T, 1> v, Mask128<T, 1> mask) {
return IfThenElseZero(mask, v);
}
// ------------------------------ LoadExpand
template <class D, HWY_IF_V_SIZE_LE_D(D, 16)>
HWY_API VFromD<D> LoadExpand(MFromD<D> mask, D d,
const TFromD<D>* HWY_RESTRICT unaligned) {
return Expand(LoadU(d, unaligned), mask);
}
#endif // HWY_NATIVE_EXPAND
// ------------------------------ TwoTablesLookupLanes
template <class D>
using IndicesFromD = decltype(IndicesFromVec(D(), Zero(RebindToUnsigned<D>())));
// RVV/SVE have their own implementations of
// TwoTablesLookupLanes(D d, VFromD<D> a, VFromD<D> b, IndicesFromD<D> idx)
#if HWY_TARGET != HWY_RVV && HWY_TARGET != HWY_SVE && \
HWY_TARGET != HWY_SVE2 && HWY_TARGET != HWY_SVE_256 && \
HWY_TARGET != HWY_SVE2_128
template <class D>
HWY_API VFromD<D> TwoTablesLookupLanes(D /*d*/, VFromD<D> a, VFromD<D> b,
IndicesFromD<D> idx) {
return TwoTablesLookupLanes(a, b, idx);
}
#endif
// ------------------------------ Reverse2, Reverse4, Reverse8 (8-bit)
#if (defined(HWY_NATIVE_REVERSE2_8) == defined(HWY_TARGET_TOGGLE)) || HWY_IDE
#ifdef HWY_NATIVE_REVERSE2_8
#undef HWY_NATIVE_REVERSE2_8
#else
#define HWY_NATIVE_REVERSE2_8
#endif
#undef HWY_PREFER_ROTATE
// Platforms on which RotateRight is likely faster than TableLookupBytes.
// RVV and SVE anyway have their own implementation of this.
#if HWY_TARGET == HWY_SSE2 || HWY_TARGET <= HWY_AVX3 || \
HWY_TARGET == HWY_WASM || HWY_TARGET == HWY_PPC8
#define HWY_PREFER_ROTATE 1
#else
#define HWY_PREFER_ROTATE 0
#endif
template <class D, HWY_IF_T_SIZE_D(D, 1)>
HWY_API VFromD<D> Reverse2(D d, VFromD<D> v) {
// Exclude AVX3 because its 16-bit RotateRight is actually 3 instructions.
#if HWY_PREFER_ROTATE && HWY_TARGET > HWY_AVX3
const Repartition<uint16_t, decltype(d)> du16;
return BitCast(d, RotateRight<8>(BitCast(du16, v)));
#else
alignas(16) static constexpr TFromD<D> kShuffle[16] = {
1, 0, 3, 2, 5, 4, 7, 6, 9, 8, 11, 10, 13, 12, 15, 14};
return TableLookupBytes(v, LoadDup128(d, kShuffle));
#endif
}
template <class D, HWY_IF_T_SIZE_D(D, 1)>
HWY_API VFromD<D> Reverse4(D d, VFromD<D> v) {
#if HWY_PREFER_ROTATE
const Repartition<uint16_t, decltype(d)> du16;
return BitCast(d, Reverse2(du16, BitCast(du16, Reverse2(d, v))));
#else
alignas(16) static constexpr uint8_t kShuffle[16] = {
3, 2, 1, 0, 7, 6, 5, 4, 11, 10, 9, 8, 15, 14, 13, 12};
const Repartition<uint8_t, decltype(d)> du8;
return TableLookupBytes(v, BitCast(d, LoadDup128(du8, kShuffle)));
#endif
}
template <class D, HWY_IF_T_SIZE_D(D, 1)>
HWY_API VFromD<D> Reverse8(D d, VFromD<D> v) {
#if HWY_PREFER_ROTATE
const Repartition<uint32_t, D> du32;
return BitCast(d, Reverse2(du32, BitCast(du32, Reverse4(d, v))));
#else
alignas(16) static constexpr uint8_t kShuffle[16] = {
7, 6, 5, 4, 3, 2, 1, 0, 15, 14, 13, 12, 11, 10, 9, 8};
const Repartition<uint8_t, decltype(d)> du8;
return TableLookupBytes(v, BitCast(d, LoadDup128(du8, kShuffle)));
#endif
}
#endif // HWY_NATIVE_REVERSE2_8
// ------------------------------ ReverseLaneBytes
#if (defined(HWY_NATIVE_REVERSE_LANE_BYTES) == defined(HWY_TARGET_TOGGLE))
#ifdef HWY_NATIVE_REVERSE_LANE_BYTES
#undef HWY_NATIVE_REVERSE_LANE_BYTES
#else
#define HWY_NATIVE_REVERSE_LANE_BYTES
#endif
template <class V, HWY_IF_T_SIZE_V(V, 2)>
HWY_API V ReverseLaneBytes(V v) {
const DFromV<V> d;
const Repartition<uint8_t, decltype(d)> du8;
return BitCast(d, Reverse2(du8, BitCast(du8, v)));
}
template <class V, HWY_IF_T_SIZE_V(V, 4)>
HWY_API V ReverseLaneBytes(V v) {
const DFromV<V> d;
const Repartition<uint8_t, decltype(d)> du8;
return BitCast(d, Reverse4(du8, BitCast(du8, v)));
}
template <class V, HWY_IF_T_SIZE_V(V, 8)>
HWY_API V ReverseLaneBytes(V v) {
const DFromV<V> d;
const Repartition<uint8_t, decltype(d)> du8;
return BitCast(d, Reverse8(du8, BitCast(du8, v)));
}
#endif // HWY_NATIVE_REVERSE_LANE_BYTES
// ------------------------------ ReverseBits
// On these targets, we emulate 8-bit shifts using 16-bit shifts and therefore
// require at least two lanes to BitCast to 16-bit. We avoid Highway's 8-bit
// shifts because those would add extra masking already taken care of by
// UI8ReverseBitsStep. Note that AVX3_DL/AVX3_ZEN4 support GFNI and use it to
// implement ReverseBits, so this code is not used there.
#undef HWY_REVERSE_BITS_MIN_BYTES
#if ((HWY_TARGET >= HWY_AVX3 && HWY_TARGET <= HWY_SSE2) || \
HWY_TARGET == HWY_WASM || HWY_TARGET == HWY_WASM_EMU256)
#define HWY_REVERSE_BITS_MIN_BYTES 2
#else
#define HWY_REVERSE_BITS_MIN_BYTES 1
#endif
#if (defined(HWY_NATIVE_REVERSE_BITS_UI8) == defined(HWY_TARGET_TOGGLE))
#ifdef HWY_NATIVE_REVERSE_BITS_UI8
#undef HWY_NATIVE_REVERSE_BITS_UI8
#else
#define HWY_NATIVE_REVERSE_BITS_UI8
#endif
namespace detail {
template <int kShiftAmt, int kShrResultMask, class V,
HWY_IF_V_SIZE_GT_D(DFromV<V>, HWY_REVERSE_BITS_MIN_BYTES - 1)>
HWY_INLINE V UI8ReverseBitsStep(V v) {
const DFromV<decltype(v)> d;
const RebindToUnsigned<decltype(d)> du;
#if HWY_REVERSE_BITS_MIN_BYTES == 2
const Repartition<uint16_t, decltype(d)> d_shift;
#else
const RebindToUnsigned<decltype(d)> d_shift;
#endif
const auto v_to_shift = BitCast(d_shift, v);
const auto shl_result = BitCast(d, ShiftLeft<kShiftAmt>(v_to_shift));
const auto shr_result = BitCast(d, ShiftRight<kShiftAmt>(v_to_shift));
const auto shr_result_mask =
BitCast(d, Set(du, static_cast<uint8_t>(kShrResultMask)));
return Or(And(shr_result, shr_result_mask),
AndNot(shr_result_mask, shl_result));
}
#if HWY_REVERSE_BITS_MIN_BYTES == 2
template <int kShiftAmt, int kShrResultMask, class V,
HWY_IF_V_SIZE_D(DFromV<V>, 1)>
HWY_INLINE V UI8ReverseBitsStep(V v) {
return V{UI8ReverseBitsStep<kShiftAmt, kShrResultMask>(Vec128<uint8_t>{v.raw})
.raw};
}
#endif
} // namespace detail
template <class V, HWY_IF_T_SIZE_V(V, 1)>
HWY_API V ReverseBits(V v) {
auto result = detail::UI8ReverseBitsStep<1, 0x55>(v);
result = detail::UI8ReverseBitsStep<2, 0x33>(result);
result = detail::UI8ReverseBitsStep<4, 0x0F>(result);
return result;
}
#endif // HWY_NATIVE_REVERSE_BITS_UI8
#if (defined(HWY_NATIVE_REVERSE_BITS_UI16_32_64) == defined(HWY_TARGET_TOGGLE))
#ifdef HWY_NATIVE_REVERSE_BITS_UI16_32_64
#undef HWY_NATIVE_REVERSE_BITS_UI16_32_64
#else
#define HWY_NATIVE_REVERSE_BITS_UI16_32_64
#endif
template <class V, HWY_IF_T_SIZE_ONE_OF_V(V, (1 << 2) | (1 << 4) | (1 << 8)),
HWY_IF_NOT_FLOAT_NOR_SPECIAL_V(V)>
HWY_API V ReverseBits(V v) {
const DFromV<decltype(v)> d;
const Repartition<uint8_t, decltype(d)> du8;
return ReverseLaneBytes(BitCast(d, ReverseBits(BitCast(du8, v))));
}
#endif // HWY_NATIVE_REVERSE_BITS_UI16_32_64
// ================================================== Operator wrapper
// SVE* and RVV currently cannot define operators and have already defined
// (only) the corresponding functions such as Add.
#if (defined(HWY_NATIVE_OPERATOR_REPLACEMENTS) == defined(HWY_TARGET_TOGGLE))
#ifdef HWY_NATIVE_OPERATOR_REPLACEMENTS
#undef HWY_NATIVE_OPERATOR_REPLACEMENTS
#else
#define HWY_NATIVE_OPERATOR_REPLACEMENTS
#endif
template <class V>
HWY_API V Add(V a, V b) {
return a + b;
}
template <class V>
HWY_API V Sub(V a, V b) {
return a - b;
}
template <class V>
HWY_API V Mul(V a, V b) {
return a * b;
}
template <class V>
HWY_API V Div(V a, V b) {
return a / b;
}
template <class V>
V Shl(V a, V b) {
return a << b;
}
template <class V>
V Shr(V a, V b) {
return a >> b;
}
template <class V>
HWY_API auto Eq(V a, V b) -> decltype(a == b) {
return a == b;
}
template <class V>
HWY_API auto Ne(V a, V b) -> decltype(a == b) {
return a != b;
}
template <class V>
HWY_API auto Lt(V a, V b) -> decltype(a == b) {
return a < b;
}
template <class V>
HWY_API auto Gt(V a, V b) -> decltype(a == b) {
return a > b;
}
template <class V>
HWY_API auto Ge(V a, V b) -> decltype(a == b) {
return a >= b;
}
template <class V>
HWY_API auto Le(V a, V b) -> decltype(a == b) {
return a <= b;
}
#endif // HWY_NATIVE_OPERATOR_REPLACEMENTS
// NOLINTNEXTLINE(google-readability-namespace-comments)
} // namespace HWY_NAMESPACE
} // namespace hwy
HWY_AFTER_NAMESPACE();