387 lines
12 KiB
JavaScript
387 lines
12 KiB
JavaScript
/** \file
|
|
* \brief Wrappers for the Gyroscope Sensor
|
|
*
|
|
* \see https://www.w3.org/TR/Gyroscope/
|
|
*
|
|
* \author Copyright (C) 2021 Radek Hranicky
|
|
*
|
|
* \license SPDX-License-Identifier: GPL-3.0-or-later
|
|
*/
|
|
//
|
|
// This program is free software: you can redistribute it and/or modify
|
|
// it under the terms of the GNU General Public License as published by
|
|
// the Free Software Foundation, either version 3 of the License, or
|
|
// (at your option) any later version.
|
|
//
|
|
// This program is distributed in the hope that it will be useful,
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
// GNU General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU General Public License
|
|
// along with this program. If not, see <https://www.gnu.org/licenses/>.
|
|
//
|
|
|
|
/** \file
|
|
* \ingroup wrappers
|
|
* MOTIVATION
|
|
* Gyroscope readings can be used for speech recognition: https://crypto.stanford.edu/gyrophone/
|
|
* and various fingerprinting operations. For stationary devices, the resonance of the unique internal or
|
|
* external sounds affects angular velocities affect the Gyroscope and allow to create a fingerprint:
|
|
* https://www.researchgate.net/publication/356678825_Mobile_Device_Fingerprint_Identification_Using_Gyroscope_Resonance
|
|
* For moving devices, one of the options is using the Gyroscope analyze human walking patterns:
|
|
* https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7071017/
|
|
*
|
|
*
|
|
* WRAPPING
|
|
* The Gyroscope sensor provides readings of the angular velocity of the device alongthe x/y/z axes.
|
|
* For a stationary device, all velocities should be zero in an ideal state. As we observed on the
|
|
* examined devices, device sensor imperfections andlittle vibrations cause the `x`, `y` and `z` to
|
|
* oscillate between -0.002 and 0.002 on the examined devices. The wrapper simulates the same behavior.
|
|
*
|
|
*
|
|
* POSSIBLE IMPROVEMENTS
|
|
* Support for simulation of a non-stationary device. This would require
|
|
* modifications to other movement-related sensors (Accelerometer, etc.)
|
|
*
|
|
*/
|
|
|
|
/*
|
|
* Create private namespace
|
|
*/
|
|
(function() {
|
|
/*
|
|
* \brief Initialization of data for storing sensor readings
|
|
*/
|
|
var init_data = `
|
|
var currentReading = currentReading || {orig_x: null, orig_y: null, orig_z: null, timestamp: null,
|
|
fake_x: null, fake_y: null, fake_z: null};
|
|
var previousReading = previousReading || {orig_x: null, orig_y: null, orig_z: null, timestamp: null,
|
|
fake_x: null, fake_y: null, fake_z: null};
|
|
var emulateStationaryDevice = (typeof args === 'undefined') ? true : args[0];
|
|
var debugMode = false;
|
|
|
|
const TWOPI = 2 * Math.PI;
|
|
`;
|
|
|
|
/*
|
|
* \brief Property getters of the original sensor object
|
|
*/
|
|
var orig_getters = `
|
|
var origGetX = Object.getOwnPropertyDescriptor(Gyroscope.prototype, "x").get;
|
|
var origGetY = Object.getOwnPropertyDescriptor(Gyroscope.prototype, "y").get;
|
|
var origGetZ = Object.getOwnPropertyDescriptor(Gyroscope.prototype, "z").get;
|
|
var origGetTimestamp = Object.getOwnPropertyDescriptor(Sensor.prototype, "timestamp").get;
|
|
`;
|
|
|
|
/*
|
|
* \brief Changes the value on the given axis to a new one from the given interval
|
|
*
|
|
* \param the axis object (min, max, value, and decimalPlaces properties required)
|
|
*/
|
|
function shake(axis) {
|
|
val = sen_prng() * (axis.max - axis.min) + axis.min;
|
|
|
|
var precision = Math.pow(10, -1 * axis.decimalPlaces);
|
|
if (val < precision) {
|
|
val = 0;
|
|
}
|
|
|
|
if (axis.canBeNegative) {
|
|
val *= Math.round(sen_prng()) ? 1 : -1;
|
|
}
|
|
|
|
if (val == 0) {
|
|
axis.value = 0;
|
|
} else {
|
|
axis.value = fixedNumber(val, axis.decimalPlaces);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* \brief The data generator for creating fake Gyroscope values
|
|
*/
|
|
class DataGenerator {
|
|
constructor() {
|
|
this.NEXT_CHANGE_MS_MIN = 500;
|
|
this.NEXT_CHANGE_MS_MAX = 2000;
|
|
this.x = {
|
|
name: "x",
|
|
min: 0.0,
|
|
max: 0.0021,
|
|
decimalPlaces: 3,
|
|
canBeNegative: true,
|
|
value: null
|
|
};
|
|
this.y = {
|
|
name: "y",
|
|
min: 0.0,
|
|
max: 0.0021,
|
|
decimalPlaces: 3,
|
|
canBeNegative: true,
|
|
value: null
|
|
};
|
|
this.z = {
|
|
name: "z",
|
|
min: 0.0,
|
|
max: 0.0021,
|
|
decimalPlaces: 3,
|
|
canBeNegative: true,
|
|
value: null
|
|
};
|
|
this.nextChangeTimeX = null; // miliseconds
|
|
this.nextChangeTimeY = null;
|
|
this.nextChangeTimeZ = null;
|
|
}
|
|
|
|
/*
|
|
* \brief Updates the x/y/z axes values based on the current timestamp
|
|
*
|
|
* \param Current timestamp from the sensor object
|
|
*/
|
|
update(currentTimestamp) {
|
|
// Simulate the Gyroscope changes
|
|
if (this.shouldWeUpdateX(currentTimestamp)) {
|
|
shake(this.x);
|
|
this.setNextChangeX(currentTimestamp);
|
|
};
|
|
if (this.shouldWeUpdateY(currentTimestamp)) {
|
|
shake(this.y);
|
|
this.setNextChangeY(currentTimestamp);
|
|
};
|
|
if (this.shouldWeUpdateZ(currentTimestamp)) {
|
|
shake(this.z);
|
|
this.setNextChangeZ(currentTimestamp);
|
|
};
|
|
}
|
|
|
|
/*
|
|
* \brief Boolean function that decides if the value on the axis X
|
|
* should be updated. Returns true if update is needed.
|
|
*
|
|
* \param Current timestamp from the sensor object
|
|
*/
|
|
shouldWeUpdateX(currentTimestamp) {
|
|
if (currentTimestamp === null || this.nextChangeTimeX === null) {
|
|
return true;
|
|
}
|
|
if (currentTimestamp >= this.nextChangeTimeX) {
|
|
return true;
|
|
} else {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* \brief Boolean function that decides if the value on the axis Y
|
|
* should be updated. Returns true if update is needed.
|
|
*
|
|
* \param Current timestamp from the sensor object
|
|
*/
|
|
shouldWeUpdateY(currentTimestamp) {
|
|
if (currentTimestamp === null || this.nextChangeTimeY === null) {
|
|
return true;
|
|
}
|
|
if (currentTimestamp >= this.nextChangeTimeY) {
|
|
return true;
|
|
} else {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* \brief Boolean function that decides if the value on the axis Z
|
|
* should be updated. Returns true if update is needed.
|
|
*
|
|
* \param Current timestamp from the sensor object
|
|
*/
|
|
shouldWeUpdateZ(currentTimestamp) {
|
|
if (currentTimestamp === null || this.nextChangeTimeZ === null) {
|
|
return true;
|
|
}
|
|
if (currentTimestamp >= this.nextChangeTimeZ) {
|
|
return true;
|
|
} else {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* \brief Sets the timestamp of the next update of value on the axis X.
|
|
*
|
|
* \param Current timestamp from the sensor object
|
|
*/
|
|
setNextChangeX(currentTimestamp) {
|
|
let interval_ms = Math.floor(
|
|
sen_prng() * (this.NEXT_CHANGE_MS_MAX - this.NEXT_CHANGE_MS_MIN + 1)
|
|
+ this.NEXT_CHANGE_MS_MIN
|
|
);
|
|
this.nextChangeTimeX = currentTimestamp + interval_ms;
|
|
}
|
|
|
|
/*
|
|
* \brief Sets the timestamp of the next update of value on the axis Y.
|
|
*
|
|
* \param Current timestamp from the sensor object
|
|
*/
|
|
setNextChangeY(currentTimestamp) {
|
|
let interval_ms = Math.floor(
|
|
sen_prng() * (this.NEXT_CHANGE_MS_MAX - this.NEXT_CHANGE_MS_MIN + 1)
|
|
+ this.NEXT_CHANGE_MS_MIN
|
|
);
|
|
this.nextChangeTimeY = currentTimestamp + interval_ms;
|
|
}
|
|
|
|
/*
|
|
* \brief Sets the timestamp of the next update of value on the axis Z.
|
|
*
|
|
* \param Current timestamp from the sensor object
|
|
*/
|
|
setNextChangeZ(currentTimestamp) {
|
|
let interval_ms = Math.floor(
|
|
sen_prng() * (this.NEXT_CHANGE_MS_MAX - this.NEXT_CHANGE_MS_MIN + 1)
|
|
+ this.NEXT_CHANGE_MS_MIN
|
|
);
|
|
this.nextChangeTimeZ = currentTimestamp + interval_ms;
|
|
}
|
|
};
|
|
|
|
/*
|
|
* \brief Updates the stored (both real and fake) sensor readings
|
|
* according to the data from the sensor object.
|
|
*
|
|
* \param The sensor object
|
|
*/
|
|
function updateReadings(sensorObject) {
|
|
|
|
// We need the original reading's timestamp to see if it differs
|
|
// from the previous sample. If so, we need to update the faked x,y,z
|
|
let previousTimestamp = previousReading.timestamp;
|
|
let currentTimestamp = origGetTimestamp.call(sensorObject);
|
|
|
|
if (debugMode) {
|
|
// [!] Debug mode: overriding timestamp
|
|
// This allows test suites to set a custom timestamp externally
|
|
// by modifying the property of the sensor object directly.
|
|
currentTimestamp = sensorObject.timestamp;
|
|
}
|
|
|
|
if (currentTimestamp === previousReading.timestamp) {
|
|
// No new reading, nothing to update
|
|
return;
|
|
}
|
|
|
|
// Rotate the readings: previous <- current
|
|
previousReading = JSON.parse(JSON.stringify(currentReading));
|
|
|
|
// Update current reading
|
|
// NOTE: Original values are also stored for possible future use
|
|
currentReading.orig_x = origGetX.call(sensorObject);
|
|
currentReading.orig_y = origGetY.call(sensorObject);
|
|
currentReading.orig_z = origGetZ.call(sensorObject);
|
|
currentReading.timestamp = currentTimestamp;
|
|
|
|
dataGenerator.update(currentTimestamp);
|
|
|
|
currentReading.fake_x = dataGenerator.x.value;
|
|
currentReading.fake_y = dataGenerator.y.value;
|
|
currentReading.fake_z = dataGenerator.z.value;
|
|
|
|
if (debugMode) {
|
|
}
|
|
}
|
|
|
|
/*
|
|
* \brief Initializes the related generators
|
|
*/
|
|
var generators = `
|
|
// Initialize the data generator, if not initialized before
|
|
var dataGenerator = dataGenerator || new DataGenerator();
|
|
`;
|
|
|
|
var helping_functions = sensorapi_prng_functions
|
|
+ DataGenerator + shake + updateReadings;
|
|
var hc = init_data + orig_getters + helping_functions + generators;
|
|
|
|
var wrappers = [
|
|
{
|
|
parent_object: "Gyroscope.prototype",
|
|
parent_object_property: "x",
|
|
wrapped_objects: [],
|
|
helping_code: hc,
|
|
post_wrapping_code: [
|
|
{
|
|
code_type: "object_properties",
|
|
parent_object: "Gyroscope.prototype",
|
|
parent_object_property: "x",
|
|
wrapped_objects: [],
|
|
/** \brief replaces Sensor.prototype.x getter to return a faked value
|
|
*/
|
|
wrapped_properties: [
|
|
{
|
|
property_name: "get",
|
|
property_value: `
|
|
function() {
|
|
updateReadings(this);
|
|
return currentReading.fake_x;
|
|
}`,
|
|
},
|
|
],
|
|
}
|
|
],
|
|
},
|
|
{
|
|
parent_object: "Gyroscope.prototype",
|
|
parent_object_property: "y",
|
|
wrapped_objects: [],
|
|
helping_code: hc,
|
|
post_wrapping_code: [
|
|
{
|
|
code_type: "object_properties",
|
|
parent_object: "Gyroscope.prototype",
|
|
parent_object_property: "y",
|
|
wrapped_objects: [],
|
|
/** \brief replaces Sensor.prototype.y getter to return a faked value
|
|
*/
|
|
wrapped_properties: [
|
|
{
|
|
property_name: "get",
|
|
property_value: `
|
|
function() {
|
|
updateReadings(this);
|
|
return currentReading.fake_y;
|
|
}`,
|
|
},
|
|
],
|
|
}
|
|
],
|
|
},
|
|
{
|
|
parent_object: "Gyroscope.prototype",
|
|
parent_object_property: "z",
|
|
wrapped_objects: [],
|
|
helping_code: hc,
|
|
post_wrapping_code: [
|
|
{
|
|
code_type: "object_properties",
|
|
parent_object: "Gyroscope.prototype",
|
|
parent_object_property: "z",
|
|
wrapped_objects: [],
|
|
/** \brief replaces Sensor.prototype.z getter to return a faked value
|
|
*/
|
|
wrapped_properties: [
|
|
{
|
|
property_name: "get",
|
|
property_value: `
|
|
function() {
|
|
updateReadings(this);
|
|
return currentReading.fake_z;
|
|
}`,
|
|
},
|
|
],
|
|
}
|
|
],
|
|
},
|
|
]
|
|
add_wrappers(wrappers);
|
|
})()
|